440 research outputs found

    What can the SNO Neutral Current Rate teach us about the Solar Neutrino Anomaly

    Get PDF
    We investigate how the anticipated neutral current rate from SNOSNO will sharpen our understanding of the solar neutrino anomaly. Quantitative analyses are performed with representative values of this rate in the expected range of 0.81.20.8 - 1.2. This would provide a 510σ5 - 10 \sigma signal for νe\nu_e transition into a state containing an active neutrino component. Assuming this state to be purely active one can estimate both the 8B^8B neutrino flux and the νe\nu_e survival probability to a much higher precision than currently possible. Finally the measured value of the NCNC rate will have profound implications for the mass and mixing parameters of the solar neutrino oscillation solution.Comment: Brief discussion on the first NC result from SNO added; final version to be published in the MPL

    A review: Solar cell current scenario and future trends

    Get PDF
    In recent years solar cell technology has achieved tremendous growth as sustainable source of energy. In last few years photovoltaic industries have emerged with an annual growth of 40%.Solar cells are renewable pollution free source of electrical energy which can easily replace traditional fossil fuels. In this article we have reviewed the previous and current status of various generations of solar cells and discussed about their future trends and aspects.&nbsp

    Three Generation Neutrino Oscillation Parameters after SNO

    Get PDF
    We examine the solar neutrino problem in the context of the realistic three neutrino mixing scenario including the SNO charged current (CC) rate. The two independent mass squared differences Δm212\Delta m^2_{21} and Δm312Δm322\Delta m^2_{31} \approx \Delta m^2_{32} are taken to be in the solar and atmospheric ranges respectively. We incorporate the constraints on Δ\Deltam312^2_{31} as obtained by the SuperKamiokande atmospheric neutrino data and determine the allowed values of Δm212\Delta m^2_{21}, θ12\theta_{12} and θ13\theta_{13} from a combined analysis of solar and CHOOZ data. Our aim is to probe the changes in the values of the mass and mixing parameters with the inclusion of the SNO data as well as the changes in the two-generation parameter region obtained from the solar neutrino analysis with the inclusion of the third generation. We find that the inclusion of the SNO CC rate in the combined solar + CHOOZ analysis puts a more restrictive bound on θ13\theta_{13}. Since the allowed values of θ13\theta_{13} are constrained to very small values by the CHOOZ experiment there is no qualitative change over the two generation allowed regions in the Δm212tan2θ12\Delta m^2_{21} - \tan^2 \theta_{12} plane. The best-fit comes in the LMA region and no allowed area is obtained in the SMA region at 3σ\sigma level from combined solar and CHOOZ analysis.Comment: One reference added. Version to apprear in PR

    MSW mediated neutrino decay and the solar neutrino problem

    Get PDF
    We investigate the solar neutrino problem assuming simultaneous presence of MSW transitions in the sun and neutrino decay on the way from sun to earth. We do a global χ2\chi^2-analysis of the data on total rates in Cl, Ga and Superkamiokande (SK) experiments and the SK day-night spectrum data and determine the changes in the allowed region in the \dm - \tan^2\theta plane in presence of decay. We also discuss the implications for unstable neutrinos in the SNO experiment.Comment: Final version to appear in Phys. Rev.

    Testing the solar LMA region with KamLAND data

    Get PDF
    We investigate the potential of 3 kiloTon-years(kTy) of KamLAND data to further constrain the Δm2\Delta m^2 and tan2θ\tan^2\theta values compared to those presently allowed by existing KamLAND and global solar data. We study the extent, dependence and characteristics of this sensitivity in and around the two parts of the LMA region that are currently allowed. Our analysis with 3 kTy simulated spectra shows that KamLAND spectrum data by itself can constrain Δm2\Delta m^2 with high precision. Combining the spectrum with global solar data further tightens the constraints on allowed values of tan2θ\tan^2\theta and Δm2\Delta m^2. We also study the effects of future neutral current data with a total error of 7% from the Sudbury Neutrino Observatory. We find that these future measurements offer the potential of considerable precision in determining the oscillation parameters (specially the mass parameter).Comment: 16 pages, to appear in J Phys.

    Flavor Symmetry L_mu - L_tau and quasi-degenerate Neutrinos

    Full text link
    Current data implies three simple forms of the neutrino mass matrix, each corresponding to the conservation of a non-standard lepton charge. While models based on L_e and L_e - L_mu - L_tau are well-known, little attention has been paid to L_mu - L_tau. A low energy mass matrix conserving L_mu - L_tau implies quasi-degenerate light neutrinos. Moreover, it is mu-tau symmetric and therefore (in contrast to L_e and L_e - L_mu - L_tau) automatically predicts maximal atmospheric neutrino mixing and zero U_{e3}. A see-saw model based on L_mu - L_tau is investigated and testable predictions for the neutrino mixing observables are given. Renormalization group running below and in between the see-saw scales is taken into account in our analysis, both numerically and analytically.Comment: 15 pages, 2 figures. Prepared for 5th International Conference on Nonaccelerator New Physics (NANP 05), Dubna, Russia, 20-25 Jun 200

    Dynamics of cubic-tetragonal phase transition in KNbO3_3 perovskite

    Full text link
    The low-energy part of the vibration spectrum in KNbO3_3 was studied by cold neutron inelastic scattering in the cubic phase. In addition to acoustic phonons, we observe strong diffuse scattering, which consists of two components. The first one is quasi-static and has a temperature-independent intensity. The second component appears as quasi-elastic scattering in the neutron spectrum indicating a dynamic origin. From analysis of the inelastic data we conclude that the quasi-elastic component and the acoustic phonon are mutually coupled. The susceptibility associated with the quasi-elastic component grows as the temperature approaches TC_C

    Atomic-scale Electronic Structure of the Cuprate Pair Density Wave State Coexisting with Superconductivity

    Full text link
    The defining characteristic of hole-doped cuprates is dd-wave high temperature superconductivity. However, intense theoretical interest is now focused on whether a pair density wave state (PDW) could coexist with cuprate superconductivity (D. F. Agterberg et al., Annual Review of Condensed Matter Physics 11, 231 (2020)). Here, we use a strong-coupling mean-field theory of cuprates, to model the atomic-scale electronic structure of an eight-unit-cell periodic, dd-symmetry form factor, pair density wave (PDW) state coexisting with dd-wave superconductivity (DSC). From this PDW+DSC model, the atomically-resolved density of Bogoliubov quasiparticle states N(r,E) is predicted at the terminal BiO surface of Bi2_2Sr2_2CaCu2_2O8_8 and compared with high-precision electronic visualization experiments using spectroscopic imaging STM. The PDW+DSC model predictions include the intra-unit-cell structure and periodic modulations of N(r,E), the modulations of the coherence peak energy Δp\Delta_p (r), and the characteristics of Bogoliubov quasiparticle interference in scattering-wavevector space (q-space). Consistency between all these predictions and the corresponding experiments indicates that lightly hole-doped Bi2_2Sr2_2CaCu2_2O8_8 does contain a PDW+DSC state. Moreover, in the model the PDW+DSC state becomes unstable to a pure DSC state at a critical hole density p*, with empirically equivalent phenomena occurring in the experiments. All these results are consistent with a picture in which the cuprate translational symmetry breaking state is a PDW, the observed charge modulations are its consequence, the antinodal pseudogap is that of the PDW state, and the cuprate critical point at p* ~ 19% occurs due to disappearance of this PDW
    corecore