17,461 research outputs found
Reduction of the radar cross section of arbitrarily shaped cavity structures
The problem of the reduction of the radar cross section (RCS) of open-ended cavities was studied. The issues investigated were reduction through lossy coating materials on the inner cavity wall and reduction through shaping of the cavity. A method was presented to calculate the RCS of any arbitrarily shaped structure in order to study the shaping problem. The limitations of this method were also addressed. The modal attenuation was studied in a multilayered coated waveguide. It was shown that by employing two layers of coating, it was possible to achieve an increase in both the magnitude of attenuation and the frequency band of effectiveness. The numerical method used in finding the roots of the characteristic equation breaks down when the coating thickness is very lossy and large in terms of wavelength. A new method of computing the RCS of an arbitrary cavity was applied to study the effects of longitudinal bending on RCS reduction. The ray and modal descriptions for the fields in a parallel plate waveguide were compared. To extend the range of validity of the Shooting and Bouncing Ray (SBR) method, the simple ray picture must be modified to account for the beam blurring
Temporal Dynamics of Photon Pairs Generated by an Atomic Ensemble
The time dependence of nonclassical correlations is investigated for two
fields (1,2) generated by an ensemble of cold Cesium atoms via the protocol of
Duan et al. [Nature Vol. 414, p. 413 (2001)]. The correlation function R(t1,t2)
for the ratio of cross to auto-correlations for the (1,2) fields at times
(t1,t2) is found to have a maximum value Rmax=292(+-)57, which significantly
violates the Cauchy-Schwarz inequality R<=1 for classical fields. Decoherence
of quantum correlations is observed over 175 ns, and is described by our model,
as is a new scheme to mitigate this effect.Comment: 5 pages, 5 figure
Heralded Entanglement between Atomic Ensembles: Preparation, Decoherence, and Scaling
Heralded entanglement between collective excitations in two atomic ensembles
is probabilistically generated, stored, and converted to single photon fields.
By way of the concurrence, quantitative characterizations are reported for the
scaling behavior of entanglement with excitation probability and for the
temporal dynamics of various correlations resulting in the decay of
entanglement. A lower bound of the concurrence for the collective atomic state
of 0.9\pm 0.3 is inferred. The decay of entanglement as a function of storage
time is also observed, and related to the local dynamics.Comment: 4 page
Basic studies of baroclinic flows
Computations were completed of transition curves in the conventional annulus, including hysteresis effect. The model GEOSIM was used to compute the transition between axisymmetric flow and baroclinic wave flow in the conventional annulus experiments. Thorough testing and documentation of the GEOSIM code were also completed. The Spacelab 3 results from the Geophysical Fluid Flow Cell (GFFC) were reviewed and numerical modeling was performed of many of the cases with horizontal temperature gradients as well as heating from below, with different rates of rotation. A numerical study of the lower transition to axisymmetric flow in the baroclinic annulus was performed using GEOSIM
Single-Photon Generation from Stored Excitation in an Atomic Ensemble
Single photons are generated from an ensemble of cold Cs atoms via the
protocol of Duan et al. [Nature \textbf{414}, 413 (2001)]. Conditioned upon an
initial detection from field 1 at 852 nm, a photon in field 2 at 894 nm is
produced in a controlled fashion from excitation stored within the atomic
ensemble. The single-quantum character of the field 2 is demonstrated by the
violation of a Cauchy-Schwarz inequality, namely , where describes detection of two events
conditioned upon an initial detection , with
for single photons.Comment: 5 pages, 4 figure
Nonclassical photon pairs from a cold atomic ensemble for scalable quantum communication
We report a dramatic improvement of the degree of nonclassical correlation between photon pairs generated by a cold atomic ensemble. The temporal dependence of this correlation and the influence of decoherence are described
Control of decoherence in the generation of photon pairs from atomic ensembles
We report an investigation to establish the physical mechanisms responsible
for decoherence in the generation of photon pairs from atomic ensembles, via
the protocol of Duan et. al for long distance quantum communication [Nature
(London) 414, 413 (2001)] and present the experimental techniques necessary to
properly control the process. We develop a theory to model in detail the
decoherence process in experiments with magneto-optical traps. The
inhomogeneous broadening of the ground state by the trap magnetic field is
identified as the principal mechanism for decoherence. In conjunction with our
theoretical analysis, we report a series of measurements to characterize and
control the coherence time in our experimental setup. We use copropagating
stimulated Raman spectroscopy to access directly the ground state energy
distribution of the ensemble. These spectroscopic measurements allow us to
switch off the trap magnetic field in a controlled way, optimizing the
repetition rate for single-photon measurements. With the magnetic field off, we
then measure nonclassical correlations for pairs of photons generated by the
ensemble as a function of the storage time of the single collective atomic
excitation. We report coherence times longer than 10 microseconds,
corresponding to an increase of two orders of magnitude compared to previous
results in cold ensembles. The coherence time is now two orders of magnitude
longer than the duration of the excitation pulses. The comparison between these
experimental results and the theory shows good agreement. Finally, we employ
our theory to devise ways to improve the experiment by optical pumping to
specific initial states.Comment: 16 pages, 11 figures, submitted for publicatio
Functional Quantum Nodes for Entanglement Distribution over Scalable Quantum Networks
We demonstrate entanglement distribution between two remote quantum nodes
located 3 meters apart. This distribution involves the asynchronous preparation
of two pairs of atomic memories and the coherent mapping of stored atomic
states into light fields in an effective state of near maximum polarization
entanglement. Entanglement is verified by way of the measured violation of a
Bell inequality, and can be used for communication protocols such as quantum
cryptography. The demonstrated quantum nodes and channels can be used as
segments of a quantum repeater, providing an essential tool for robust
long-distance quantum communication.Comment: 10 pages, 7 figures. Text revised, additional information included in
Appendix. Published online in Science Express, 5 April, 200
Towards experimental entanglement connection with atomic ensembles in the single excitation regime
We present a protocol for performing entanglement connection between pairs of
atomic ensembles in the single excitation regime. Two pairs are prepared in an
asynchronous fashion and then connected via a Bell measurement. The resulting
state of the two remaining ensembles is mapped to photonic modes and a reduced
density matrix is then reconstructed. Our observations confirm for the first
time the creation of coherence between atomic systems that never interacted, a
first step towards entanglement connection, a critical requirement for quantum
networking and long distance quantum communications
- …