17,461 research outputs found

    Reduction of the radar cross section of arbitrarily shaped cavity structures

    Get PDF
    The problem of the reduction of the radar cross section (RCS) of open-ended cavities was studied. The issues investigated were reduction through lossy coating materials on the inner cavity wall and reduction through shaping of the cavity. A method was presented to calculate the RCS of any arbitrarily shaped structure in order to study the shaping problem. The limitations of this method were also addressed. The modal attenuation was studied in a multilayered coated waveguide. It was shown that by employing two layers of coating, it was possible to achieve an increase in both the magnitude of attenuation and the frequency band of effectiveness. The numerical method used in finding the roots of the characteristic equation breaks down when the coating thickness is very lossy and large in terms of wavelength. A new method of computing the RCS of an arbitrary cavity was applied to study the effects of longitudinal bending on RCS reduction. The ray and modal descriptions for the fields in a parallel plate waveguide were compared. To extend the range of validity of the Shooting and Bouncing Ray (SBR) method, the simple ray picture must be modified to account for the beam blurring

    Temporal Dynamics of Photon Pairs Generated by an Atomic Ensemble

    Get PDF
    The time dependence of nonclassical correlations is investigated for two fields (1,2) generated by an ensemble of cold Cesium atoms via the protocol of Duan et al. [Nature Vol. 414, p. 413 (2001)]. The correlation function R(t1,t2) for the ratio of cross to auto-correlations for the (1,2) fields at times (t1,t2) is found to have a maximum value Rmax=292(+-)57, which significantly violates the Cauchy-Schwarz inequality R<=1 for classical fields. Decoherence of quantum correlations is observed over 175 ns, and is described by our model, as is a new scheme to mitigate this effect.Comment: 5 pages, 5 figure

    Heralded Entanglement between Atomic Ensembles: Preparation, Decoherence, and Scaling

    Get PDF
    Heralded entanglement between collective excitations in two atomic ensembles is probabilistically generated, stored, and converted to single photon fields. By way of the concurrence, quantitative characterizations are reported for the scaling behavior of entanglement with excitation probability and for the temporal dynamics of various correlations resulting in the decay of entanglement. A lower bound of the concurrence for the collective atomic state of 0.9\pm 0.3 is inferred. The decay of entanglement as a function of storage time is also observed, and related to the local dynamics.Comment: 4 page

    Basic studies of baroclinic flows

    Get PDF
    Computations were completed of transition curves in the conventional annulus, including hysteresis effect. The model GEOSIM was used to compute the transition between axisymmetric flow and baroclinic wave flow in the conventional annulus experiments. Thorough testing and documentation of the GEOSIM code were also completed. The Spacelab 3 results from the Geophysical Fluid Flow Cell (GFFC) were reviewed and numerical modeling was performed of many of the cases with horizontal temperature gradients as well as heating from below, with different rates of rotation. A numerical study of the lower transition to axisymmetric flow in the baroclinic annulus was performed using GEOSIM

    Single-Photon Generation from Stored Excitation in an Atomic Ensemble

    Get PDF
    Single photons are generated from an ensemble of cold Cs atoms via the protocol of Duan et al. [Nature \textbf{414}, 413 (2001)]. Conditioned upon an initial detection from field 1 at 852 nm, a photon in field 2 at 894 nm is produced in a controlled fashion from excitation stored within the atomic ensemble. The single-quantum character of the field 2 is demonstrated by the violation of a Cauchy-Schwarz inequality, namely w(12,1211)=0.24±0.051w(1_{2},1_{2}|1_{1})=0.24\pm 0.05\ngeq 1, where w(12,1211)w(1_{2},1_{2}|1_{1}) describes detection of two events (12,12)(1_{2},1_{2}) conditioned upon an initial detection 111_{1}, with w0w\to 0 for single photons.Comment: 5 pages, 4 figure

    Nonclassical photon pairs from a cold atomic ensemble for scalable quantum communication

    Get PDF
    We report a dramatic improvement of the degree of nonclassical correlation between photon pairs generated by a cold atomic ensemble. The temporal dependence of this correlation and the influence of decoherence are described

    Control of decoherence in the generation of photon pairs from atomic ensembles

    Full text link
    We report an investigation to establish the physical mechanisms responsible for decoherence in the generation of photon pairs from atomic ensembles, via the protocol of Duan et. al for long distance quantum communication [Nature (London) 414, 413 (2001)] and present the experimental techniques necessary to properly control the process. We develop a theory to model in detail the decoherence process in experiments with magneto-optical traps. The inhomogeneous broadening of the ground state by the trap magnetic field is identified as the principal mechanism for decoherence. In conjunction with our theoretical analysis, we report a series of measurements to characterize and control the coherence time in our experimental setup. We use copropagating stimulated Raman spectroscopy to access directly the ground state energy distribution of the ensemble. These spectroscopic measurements allow us to switch off the trap magnetic field in a controlled way, optimizing the repetition rate for single-photon measurements. With the magnetic field off, we then measure nonclassical correlations for pairs of photons generated by the ensemble as a function of the storage time of the single collective atomic excitation. We report coherence times longer than 10 microseconds, corresponding to an increase of two orders of magnitude compared to previous results in cold ensembles. The coherence time is now two orders of magnitude longer than the duration of the excitation pulses. The comparison between these experimental results and the theory shows good agreement. Finally, we employ our theory to devise ways to improve the experiment by optical pumping to specific initial states.Comment: 16 pages, 11 figures, submitted for publicatio

    Functional Quantum Nodes for Entanglement Distribution over Scalable Quantum Networks

    Get PDF
    We demonstrate entanglement distribution between two remote quantum nodes located 3 meters apart. This distribution involves the asynchronous preparation of two pairs of atomic memories and the coherent mapping of stored atomic states into light fields in an effective state of near maximum polarization entanglement. Entanglement is verified by way of the measured violation of a Bell inequality, and can be used for communication protocols such as quantum cryptography. The demonstrated quantum nodes and channels can be used as segments of a quantum repeater, providing an essential tool for robust long-distance quantum communication.Comment: 10 pages, 7 figures. Text revised, additional information included in Appendix. Published online in Science Express, 5 April, 200

    Towards experimental entanglement connection with atomic ensembles in the single excitation regime

    Get PDF
    We present a protocol for performing entanglement connection between pairs of atomic ensembles in the single excitation regime. Two pairs are prepared in an asynchronous fashion and then connected via a Bell measurement. The resulting state of the two remaining ensembles is mapped to photonic modes and a reduced density matrix is then reconstructed. Our observations confirm for the first time the creation of coherence between atomic systems that never interacted, a first step towards entanglement connection, a critical requirement for quantum networking and long distance quantum communications
    corecore