10 research outputs found

    A comprehensive characterization of aggravated aging-related changes in T lymphocytes and monocytes in end-stage renal disease: The iESRD study

    Get PDF
    Background: Patients with end-stage renal disease (ESRD) exhibit a premature aging phenotype of the immune system. Nevertheless, the etiology and impact of these changes in ESRD patients remain unknown. Results: Compared to healthy individuals, ESRD patients exhibit accelerated immunosenescence in both T cell and monocyte compartments, characterized by a dramatic reduction in naïve CD4+ and CD8+ T cell numbers but increase in CD8+ TEMRA cell and proinflammatory monocyte numbers. Notably, within ESRD patients, aging-related immune changes positively correlated not only with increasing age but also with longer dialysis vintage. In multivariable-adjusted logistic regression models, the combination of high terminally differentiated CD8+ T cell level and high intermediate monocyte level, as a composite predictive immunophenotype, was independently associated with prevalent coronary artery disease as well as cardiovascular disease, after adjustment for age, sex, systemic inflammation and presence of diabetes. Levels of terminally differentiated CD8+ T cells also positively correlated with the level of uremic toxin p-cresyl sulfate. Conclusions: Aging-associated adaptive and innate immune changes are aggravated in ESRD and are associated with cardiovascular diseases. For the first time, our study demonstrates the potential link between immunosenescence in ESRD and duration of exposure to the uremic milieu

    Mitochondrial proteomics analysis of tumorigenic andmetastatic breast cancer markers,”

    No full text
    Abstract Mitochondria are key organelles in mammary cells responsible for several cellular functions including growth, division, and energy metabolism. In this study, mitochondrial proteins were enriched for proteomics analysis with the state-of-the-art two-dimensional differential gel electrophoresis and matrix-assistant laser desorption ionization-time-of-flight mass spectrometry strategy to compare and identify the mitochondrial protein profiling changes between three breast cell lines with different tumorigenicity and metastasis. The proteomics results demonstrate more than 1,500 protein features were resolved from the equal amount pooled from three purified mitochondrial proteins, and 125 differentially expressed spots were identified by their peptide finger print, in which, 33 identified proteins belonged to mitochondrial proteins. Eighteen out of these 33 identified mitochondrial proteins such as SCaMC-1 have not been reported in breast cancer research to our knowledge. Additionally, mitochondrial protein prohibitin has shown to be differentially distributed in mitochondria and in nucleus for normal breast cells and breast cancer cell lines, respectively. To sum up, our approach to identify the mitochondrial proteins in various stages of breast cancer progression and the identified proteins may be further evaluated as potential breast cancer markers in prognosis and therapy

    Abstracts from the 8th International Congress of the Asia Pacific Society of Infection Control (APSIC)

    Get PDF
    corecore