1,108 research outputs found

    Statics and dynamics of single DNA molecules confined in nanochannels

    Get PDF
    The successful design of nanofluidic devices for the manipulation of biopolymers requires an understanding of how the predictions of soft condensed matter physics scale with device dimensions. Here we present measurements of DNA extended in nanochannels and show that below a critical width roughly twice the persistence length there is a crossover in the polymer physics

    HDQLIFE and neuro‐QoL physical function measures: Responsiveness in persons with huntington’s disease

    Full text link
    BackgroundHuntington’s disease (HD) is a neurological disorder that causes severe motor symptoms that adversely impact health‐related quality of life. Patient‐reported physical function outcome measures in HD have shown cross‐sectional evidence of validity, but responsiveness has not yet been assessed.ObjectivesThis study evaluates the responsiveness of the Huntington Disease Health‐Related Quality of Life (HDQLIFE) and the Quality of Life in Neurological Disorders (Neuro‐QoL) physical function measures in persons with HD.MethodsA total of 347 participants completed baseline and at least 1 follow‐up (12‐month and 24‐month) measure (HDQLIFE Chorea, HDQLIFE Swallowing Difficulties, HDQLIFE Speech Difficulties, Neuro‐QoL Upper Extremity Function, and/or Neuro‐QoL Lower Extremity Function). Of the participants that completed the baseline assessment, 338 (90.9%) completed the 12‐month assessment, and 293 (78.8%) completed the 24‐month assessment. Standardized response means and general linear models evaluated whether the physical function measures were responsive to self‐reported and clinician‐rated change over time.ResultsSmall to moderate effect sizes for the standardized response means supported 12‐month and 24‐month responsiveness of the HDQLIFE and Neuro‐QoL measures for those with either self‐reported or clinician‐rated declines in function. General linear models supported 12‐month and 24‐month responsiveness for all HRQOL measures relative to self‐reported declines in health, but generally only 24‐month responsiveness was supported relative to clinician‐rated declines in function.ConclusionsLongitudinal analyses indicate that the HDQLIFE and the Neuro‐QoL physical function measures are sensitive to change over time in individuals with HD. Thus, these scales exhibit evidence of responsiveness and may be useful outcome measures in future clinical trials. © 2019 International Parkinson and Movement Disorder SocietyPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154235/1/mds27908_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154235/2/mds27908.pd

    Image of the Energy Gap Anisotropy in the Vibrational Spectum of a High Temperature Superconductor

    Full text link
    We present a new method of determining the anisotropy of the gap function in layered high-Tc superconductors. Careful inelastic neutron scattering measurements at low temperature of the phonon dispersion curves in the (100) direction in La_(1.85)Sr_(.15)CuO_4 would determine whether the gap is predominately s-wave or d-wave. We also propose an experiment to determine the gap at each point on a quasi-two-dimensional Fermi surface.Comment: 12 pages + 2 figures (included

    Rare Complications of Cervical Spine Surgery: Pseudomeningocoele.

    Get PDF
    STUDY DESIGN: This study was a retrospective, multicenter cohort study. OBJECTIVES: Rare complications of cervical spine surgery are inherently difficult to investigate. Pseudomeningocoele (PMC), an abnormal collection of cerebrospinal fluid that communicates with the subarachnoid space, is one such complication. In order to evaluate and better understand the incidence, presentation, treatment, and outcome of PMC following cervical spine surgery, we conducted a multicenter study to pool our collective experience. METHODS: This study was a retrospective, multicenter cohort study of patients who underwent cervical spine surgery at any level(s) from C2 to C7, inclusive; were over 18 years of age; and experienced a postoperative PMC. RESULTS: Thirteen patients (0.08%) developed a postoperative PMC, 6 (46.2%) of whom were female. They had an average age of 48.2 years and stayed in hospital a mean of 11.2 days. Three patients were current smokers, 3 previous smokers, 5 had never smoked, and 2 had unknown smoking status. The majority, 10 (76.9%), were associated with posterior surgery, whereas 3 (23.1%) occurred after an anterior procedure. Myelopathy was the most common indication for operations that were complicated by PMC (46%). Seven patients (53%) required a surgical procedure to address the PMC, whereas the remaining 6 were treated conservatively. All PMCs ultimately resolved or were successfully treated with no residual effects. CONCLUSIONS: PMC is a rare complication of cervical surgery with an incidence of less than 0.1%. They prolong hospital stay. PMCs occurred more frequently in association with posterior approaches. Approximately half of PMCs required surgery and all ultimately resolved without residual neurologic or other long-term effects

    C5 Palsy After Cervical Spine Surgery: A Multicenter Retrospective Review of 59 Cases.

    Get PDF
    STUDY DESIGN: A multicenter, retrospective review of C5 palsy after cervical spine surgery. OBJECTIVE: Postoperative C5 palsy is a known complication of cervical decompressive spinal surgery. The goal of this study was to review the incidence, patient characteristics, and outcome of C5 palsy in patients undergoing cervical spine surgery. METHODS: We conducted a multicenter, retrospective review of 13 946 patients across 21 centers who received cervical spine surgery (levels C2 to C7) between January 1, 2005, and December 31, 2011, inclusive. P values were calculated using 2-sample t test for continuous variables and χ(2) tests or Fisher exact tests for categorical variables. RESULTS: Of the 13 946 cases reviewed, 59 patients experienced a postoperative C5 palsy. The incidence rate across the 21 sites ranged from 0% to 2.5%. At most recent follow-up, 32 patients reported complete resolution of symptoms (54.2%), 15 had symptoms resolve with residual effects (25.4%), 10 patients did not recover (17.0%), and 2 were lost to follow-up (3.4%). CONCLUSION: C5 palsy occurred in all surgical approaches and across a variety of diagnoses. The majority of patients had full recovery or recovery with residual effects. This study represents the largest series of North American patients reviewed to date

    Agreement Between Clinician-Rated Versus Patient-Reported Outcomes in Huntington Disease

    Get PDF
    BACKGROUND: Clinician-rated measures of functioning are often used as primary endpoints in clinical trials and other behavioral research in Huntington disease. As study costs for clinician-rated assessments are not always feasible, there is a question of whether patient self-report of commonly used clinician-rated measures may serve as acceptable alternatives in low risk behavioral trials. AIM: The purpose of this paper was to determine the level of agreement between self-report and clinician-ratings of commonly used functional assessment measures in Huntington disease. DESIGN: 486 participants with premanifest or manifest Huntington disease were examined. Total Functional Capacity, Functional Assessment, and Independence Scale assessments from the Unified Huntington Disease Rating scale were completed by clinicians; a self-report version was also completed by individuals with Huntington disease. Cronbach\u27s α was used to examine internal consistency, one-way analysis of variance was used to examine group differences, and paired t tests, kappa agreement coefficients, and intra-class correlations were calculated to determine agreement between raters. RESULTS: Internal consistency for self-reported ratings of functional capacity and ability were good. There were significant differences between those with premanifest, early-, and late-stage disease; those with later-stage disease reported less ability and independence than the other clinical groups. Although self-report ratings were not a perfect match with associated clinician-rated measures, differences were small. Cutoffs for achieving specified levels of agreement are provided. CONCLUSIONS: Depending on the acceptable margin of error in a study, self-reported administration of these functional assessments may be appropriate when clinician-related assessments are not feasible

    Deploying aptameric sensing technology for rapid pandemic monitoring

    Get PDF
    The genome of virulent strains may possess the ability to mutate by means of antigenic shift and/or antigenic drift as well as being resistant to antibiotics with time. The outbreak and spread of these virulent diseases including avian influenza (H1N1), severe acute respiratory syndrome (SARS-Corona virus), cholera (Vibrio cholera), tuberculosis (Mycobacterium tuberculosis), Ebola hemorrhagic fever (Ebola Virus) and AIDS (HIV-1) necessitate urgent attention to develop diagnostic protocols and assays for rapid detection and screening. Rapid and accurate detection of first cases with certainty will contribute significantly in preventing disease transmission and escalation to pandemic levels. As a result, there is a need to develop technologies that can meet the heavy demand of an all-embedded, inexpensive, specific and fast biosensing for the detection and screening of pathogens in active or latent forms to offer quick diagnosis and early treatments in order to avoid disease aggravation and unnecessary late treatment costs. Nucleic acid aptamers are short, single-stranded RNA or DNA sequences that can selectively bind to specific cellular and biomolecular targets. Aptamers, as new-age bioaffinity probes, have the necessary biophysical characteristics for improved pathogen detection. This article seeks to review global pandemic situations in relation to advances in pathogen detection systems. It particularly discusses aptameric biosensing and establishes application opportunities for effective pandemic monitoring. Insights into the application of continuous polymeric supports as the synthetic base for aptamer coupling to provide the needed convective mass transport for rapid screening is also presented

    A new view of electrochemistry at highly oriented pyrolytic graphite

    Get PDF
    Major new insights on electrochemical processes at graphite electrodes are reported, following extensive investigations of two of the most studied redox couples, Fe(CN)64–/3– and Ru(NH3)63+/2+. Experiments have been carried out on five different grades of highly oriented pyrolytic graphite (HOPG) that vary in step-edge height and surface coverage. Significantly, the same electrochemical characteristic is observed on all surfaces, independent of surface quality: initial cyclic voltammetry (CV) is close to reversible on freshly cleaved surfaces (>400 measurements for Fe(CN)64–/3– and >100 for Ru(NH3)63+/2+), in marked contrast to previous studies that have found very slow electron transfer (ET) kinetics, with an interpretation that ET only occurs at step edges. Significantly, high spatial resolution electrochemical imaging with scanning electrochemical cell microscopy, on the highest quality mechanically cleaved HOPG, demonstrates definitively that the pristine basal surface supports fast ET, and that ET is not confined to step edges. However, the history of the HOPG surface strongly influences the electrochemical behavior. Thus, Fe(CN)64–/3– shows markedly diminished ET kinetics with either extended exposure of the HOPG surface to the ambient environment or repeated CV measurements. In situ atomic force microscopy (AFM) reveals that the deterioration in apparent ET kinetics is coupled with the deposition of material on the HOPG electrode, while conducting-AFM highlights that, after cleaving, the local surface conductivity of HOPG deteriorates significantly with time. These observations and new insights are not only important for graphite, but have significant implications for electrochemistry at related carbon materials such as graphene and carbon nanotubes

    Quantitative localized proton-promoted dissolution kinetics of calcite using scanning electrochemical microscopy (SECM)

    Get PDF
    Scanning electrochemical microscopy (SECM) has been used to determine quantitatively the kinetics of proton-promoted dissolution of the calcite (101̅4) cleavage surface (from natural “Iceland Spar”) at the microscopic scale. By working under conditions where the probe size is much less than the characteristic dislocation spacing (as revealed from etching), it has been possible to measure kinetics mainly in regions of the surface which are free from dislocations, for the first time. To clearly reveal the locations of measurements, studies focused on cleaved “mirror” surfaces, where one of the two faces produced by cleavage was etched freely to reveal defects intersecting the surface, while the other (mirror) face was etched locally (and quantitatively) using SECM to generate high proton fluxes with a 25 ÎŒm diameter Pt disk ultramicroelectrode (UME) positioned at a defined (known) distance from a crystal surface. The etch pits formed at various etch times were measured using white light interferometry to ascertain pit dimensions. To determine quantitative dissolution kinetics, a moving boundary finite element model was formulated in which experimental time-dependent pit expansion data formed the input for simulations, from which solution and interfacial concentrations of key chemical species, and interfacial fluxes, could then be determined and visualized. This novel analysis allowed the rate constant for proton attack on calcite, and the order of the reaction with respect to the interfacial proton concentration, to be determined unambiguously. The process was found to be first order in terms of interfacial proton concentration with a rate constant k = 6.3 (± 1.3) × 10–4 m s–1. Significantly, this value is similar to previous macroscopic rate measurements of calcite dissolution which averaged over large areas and many dislocation sites, and where such sites provided a continuous source of steps for dissolution. Since the local measurements reported herein are mainly made in regions without dislocations, this study demonstrates that dislocations and steps that arise from such sites are not needed for fast proton-promoted calcite dissolution. Other sites, such as point defects, which are naturally abundant in calcite, are likely to be key reaction sites
    • 

    corecore