2 research outputs found

    RhoGDIβ-induced hypertrophic growth in H9c2 cells is negatively regulated by ZAK

    Get PDF
    We found that overexpression of RhoGDIβ, a Rho GDP dissociation inhibitor, induced hypertrophic growth and suppressed cell cycle progression in a cultured cardiomyoblast cell line. Knockdown of RhoGDIβ expression by RNA interference blocked hypertrophic growth. We further demonstrated that RhoGDIβ physically interacts with ZAK and is phosphorylated by ZAK in vitro, and this phosphorylation negatively regulates RhoGDIβ functions. Moreover, the ZAK-RhoGDIβ interaction may maintain ZAK in an inactive hypophosphorylated form. These two proteins could negatively regulate one another such that ZAK suppresses RhoGDIβ functions through phosphorylation and RhoGDIβ counteracts the effects of ZAK by physical interaction. Knockdown of ZAK expression in ZAK- and RhoGDIβ-expressing cells by ZAK-specific RNA interference restored the full functions of RhoGDIβ

    ZAK negatively regulates RhoGDIβ-induced Rac1-mediated hypertrophic growth and cell migration

    Get PDF
    RhoGDIβ, a Rho GDP dissociation inhibitor, induced hypertrophic growth and cell migration in a cultured cardiomyoblast cell line, H9c2. We demonstrated that RhoGDIβ plays a previously undefined role in regulating Rac1 expression through transcription to induce hypertrophic growth and cell migration and that these functions are blocked by the expression of a dominant-negative form of Rac1. We also demonstrated that knockdown of RhoGDIβ expression by RNA interference blocked RhoGDIβ-induced Rac1 expression and cell migration. We demonstrated that the co-expression of ZAK and RhoGDIβ in cells resulted in an inhibition in the activity of ZAK to induce ANF expression. Knockdown of ZAK expression in ZAK-RhoGDIβ-expressing cells by ZAK-specific RNA interference restored the activities of RhoGDIβ
    corecore