38 research outputs found

    Long-Term Prediction of Emergency Department Revenue and Visitor Volume Using Autoregressive Integrated Moving Average Model

    Get PDF
    This study analyzed meteorological, clinical and economic factors in terms of their effects on monthly ED revenue and visitor volume. Monthly data from January 1, 2005 to September 30, 2009 were analyzed. Spearman correlation and cross-correlation analyses were performed to identify the correlation between each independent variable, ED revenue, and visitor volume. Autoregressive integrated moving average (ARIMA) model was used to quantify the relationship between each independent variable, ED revenue, and visitor volume. The accuracies were evaluated by comparing model forecasts to actual values with mean absolute percentage of error. Sensitivity of prediction errors to model training time was also evaluated. The ARIMA models indicated that mean maximum temperature, relative humidity, rainfall, non-trauma, and trauma visits may correlate positively with ED revenue, but mean minimum temperature may correlate negatively with ED revenue. Moreover, mean minimum temperature and stock market index fluctuation may correlate positively with trauma visitor volume. Mean maximum temperature, relative humidity and stock market index fluctuation may correlate positively with non-trauma visitor volume. Mean maximum temperature and relative humidity may correlate positively with pediatric visitor volume, but mean minimum temperature may correlate negatively with pediatric visitor volume. The model also performed well in forecasting revenue and visitor volume

    Molecular Characteristics and Antimicrobial Resistance of Group B Streptococcus Strains Causing Invasive Disease in Neonates and Adults

    Get PDF
    We aimed to analyze the molecular characteristics, clonality and antimicrobial resistance profiles of group B streptococcus (GBS) isolates collected in Taiwan from invasive diseases and carriage. Multilocus sequence typing (MLST) was used to assess the genetic diversity of 225 GBS strains from neonates and adults with invasive GBS diseases. 100 GBS strains collected from colonized pregnant women during the same period were compared, and all strains were characterized for one of nine capsule genotypes. We also determined the susceptibilities of all GBS isolates to various antimicrobial agents. The most frequently identified serotypes that caused invasive disease in neonates were III (60.6%) and Ia (17.3%), whereas type VI (32.7%), Ib (19.4%), and V (19.4%) were the most common to cause invasive disease in adults. Serotype VI was the leading type that colonized pregnant women (35.0%). Twenty-six sequence types (STs) were identified, and 90.5% of GBS strains were represented by 6 STs. ST-17 and ST-1 were more prevalent in invasive diseases in neonates and adults, respectively. The majority of serotype III and VI isolates belonged to clonal complex (CC)-17 and CC-1, respectively. ST-17 strains were more likely to cause meningitis and late-onset disease than other strains. In addition, ST-12 and ST-17 GBS strains showed the highest rate of resistance to erythromycin and clindamycin (range: 75.8–100%). In conclusion, CC-17/type III and CC-1/type VI are the most important invasive pathogens in infants and non-pregnant adults in Taiwan, respectively. GBS genotypes vary between different age groups and geographical areas and should be considered during GBS vaccine development

    Risk Factors of Initial Inappropriate Antibiotic Therapy and the Impacts on Outcomes of Neonates with Gram-Negative Bacteremia

    No full text
    Background: Timely appropriate empirical antibiotic plays an important role in critically ill patients with gram-negative bacteremia. However, the relevant data and significant impacts have not been well studied in the neonatal intensive care unit (NICU). Methods: An 8-year (1 January 2007–31 December 2014) cohort study of all NICU patients with gram-negative bacteremia (GNB) in a tertiary-care medical center was performed. Inadequate empirical antibiotic therapy was defined when a patient did not receive any antimicrobial agent to which the causative microorganisms were susceptible within 24 h of blood culture sampling. Neonates with GNB treated with inadequate antibiotics were compared with those who received initial adequate antibiotics. Results: Among 376 episodes of Gram-negative bacteremia, 75 (19.9%) received inadequate empirical antibiotic therapy. The cause of inadequate treatment was mostly due to the pathogen resistance to prescribed antibiotics (88.0%). Bacteremia caused by Pseudomonas aeruginosa (Odds ratio [OR]: 20.8, P < 0.001) and extended spectrum β-lactamase (ESBL)-producing bacteria (OR: 18.4, P < 0.001) had the highest risk of inadequate treatment. Previous exposure with third generation cephalosporin was identified as the only independent risk factor (OR: 2.52, 95% CI: 1.18–5.37, P = 0.018). Empirically inadequately treated bacteremias were significantly more likely to have worse outcomes than those with adequate therapy, including a higher risk of major organ damage (20.0% versus 6.6%, P < 0.001) and infectious complications (25.3% versus 9.3%, P < 0.001), and overall mortality (22.7% versus 11.0%, P = 0.013). Conclusions: Inadequate empirical antibiotic therapy occurs in one-fifth of Gram-negative bacteremias in the NICU, and is associated with worse outcomes. Additional prospective studies are needed to elucidate the optimal timing and aggressive antibiotic regimen for neonates who are at risk of antibiotic-resistant Gram-negative bacteremia

    Intraoperative three-dimensional transesophageal echocardiography for assessing the defect geometries of mitral prosthetic paravalvular leak during transcatheter closure

    No full text
    Background: Paravalvular leaks (PVLs) are a common complication of prosthetic valve replacement. Use of the transcatheter intervention technique is a suitable alternative in high-risk patients who may not tolerate repeat surgery. Common reasons for failure of this demanding intervention include poor imaging quality and unsuitable anatomy. The purpose of this study was to assess the usefulness and the incremental value of real-time three-dimensional (RT 3D) transesophageal echocardiography (TEE) over two-dimensional (2D) TEE findings in the evaluation of the geometry and track of mitral PVLs during transcatheter closure. Methods: Five patients with six mitral PVLs at high risk for repeat surgery underwent transcatheter leak closure. Intraoperative RT 3DTEE was used to assess the location, shape, number, and size of the defects. Transapical approaches were used in all cases with fluoroscopic and RT 3D TEE guidance of the wire and catheter, device positioning, and assessment of residual leak after the procedure. Results: In all of the cases, defects with irregular crescent shapes and distorted tracks were clearly delineated by RT 3D TEE. This was compared to those results obtained through 2D TEE, which was unable to characterize the defects. Three cases showed small leaks, which were completely occluded with a patent ductus arteriosus (PDA) device in two cases, and a muscular ventricular septal defect (mVSD) occluder combined with coil devices in one case. One case involved a large leak and early device embolization of the muscular VSD occluder, which was removed surgically, and demonstrated a crescent–shaped defect. One patient had two releaks 2 months subsequent to the procedure due to two new extended leaks at the tails of the crescent–shaped defect. Conclusion: RT 3D TEE can clearly delineate the geometries of defects in their entirety, including shape, size, and location of the defect and track canal. It would also appear that RT 3D TEE is superior to 2D TEE in the process of guiding the wire through the difficult canal anatomy, facilitating the overall procedure. The small mitral PVLs can be completely occluded, but subsequent complications occurred with large defect closures because of embolization or releak. Therefore, transcatheter closure of PVLs seems to be an attractive alternative for these patients, but newer occluder designs that better conform to leak geometry will be required to improve outcomes

    Shortening the Time of the Identification and Antimicrobial Susceptibility Testing on Positive Blood Cultures with MALDI-TOF MS

    No full text
    The current processes used in clinical microbiology laboratories take ~24 h for incubation to identify the bacteria after the blood culture has been confirmed as positive and fa further ~24 h to report the results of antimicrobial susceptibility tests (ASTs). Patients with suspected bloodstream infection are treated with empiric broad-spectrum antibiotics but delayed targeted antimicrobial therapy. This study aimed to develop a method with a significantly shortened turnaround time for clinical application by identifying the optimal incubation period of a subculture. A total of 188 positive blood culture samples obtained from Nov. 2019 to Aug. 2020 were included. Compared to the conventional 24-h incubation for bacterial identification, our approach achieved 96.1% and 97.4% identification accuracy after shortening the incubation time to 4.5 and 3.5 h for gram-positive (GP) and gram-negative (GN) bacterial samples, respectively. Samples from short-term incubation without any intermediate step or process were directly subjected to analysis with the Phoenix M50 AST. Compared to the conventional disk diffusion AST, the category agreements for GP (excluding Streptococcus spp.), Streptococcus spp., and GN bacterial samples were 91.8%, 97.5%, and 92.7%, respectively. Our approach significantly reduced the average turnaround time from 48 h to 28 h for reporting bacterial identity and decreased average AST from 72 h to 50.3 h compared to the conventional methods. Accordingly, this approach allows a physician to prescribe the appropriate antibiotic(s) ~21.7 h earlier, thereby improving patient outcomes
    corecore