275 research outputs found

    Radon Emanation Techniques and Measurements for LZ

    Full text link
    Radon emanation was projected to account for >50>50% of the electron recoil background in the WIMP region of interest for the LUX-ZEPLIN (LZ) experiment. To mitigate the amount of radon inside the detector volume, materials with inherently low radioactivity content were selected for LZ construction through an extensive screening campaign. The SD Mines radon emanation system was one of four emanation facilities utilized to screen materials during construction of LZ. SD Mines also employed a portable radon collection system for equipment too large or delicate to move to a radon emanation facility. This portable system was used to assay the Inner Cryostat Vessel in-situ at various stages of detector construction, resulting in the inference that the titanium cryostat is the source of significant radon emanation. Assays of a 228^{228}Th source confirmed that its 222^{222}Rn emanation is low enough for it to be used, and that 14% of the 220^{220}Rn emanates from the source at room temperature.Comment: 6 pages, 4 figures, submitted to LRT 2022 Conference Proceeding

    Classical-quantum correspondence in electron-positron pair creation

    Get PDF
    We examine the creation of electron-positron pairs in a very strong force field. Using numerical solutions to quantum field theory we calculate the spatial and momentum probability distributions for the created particles. A comparison with classical mechanical phase space calculations suggests that despite the fully relativistic and quantum mechanical nature of the matter creation process, most aspects can be reproduced accurately in terms of classical mechanics

    The CUORE Cryostat: A 1-Ton Scale Setup for Bolometric Detectors

    Get PDF
    The cryogenic underground observatory for rare events (CUORE) is a 1-ton scale bolometric experiment whose detector consists of an array of 988 TeO2 crystals arranged in a cylindrical compact structure of 19 towers. This will be the largest bolometric mass ever operated. The experiment will work at a temperature around or below 10 mK. CUORE cryostat consists of a cryogen-free system based on pulse tubes and a custom high power dilution refrigerator, designed to match these specifications. The cryostat has been commissioned in 2014 at the Gran Sasso National Laboratories and reached a record temperature of 6 mK on a cubic meter scale. In this paper, we present results of CUORE commissioning runs. Details on the thermal characteristics and cryogenic performances of the system will be also given.Comment: 7 pages, 2 figures, LTD16 conference proceedin

    Search for low-mass dark matter via bremsstrahlung radiation and the Migdal effect in SuperCDMS

    Get PDF
    We present a new analysis of previously published SuperCDMS data using a profile likelihood framework to search for sub-GeV dark matter (DM) particles through two inelastic scattering channels: bremsstrahlung radiation and the Migdal effect. By considering these possible inelastic scattering channels, experimental sensitivity can be extended to DM masses that are undetectable through the DM-nucleon elastic scattering channel, given the energy threshold of current experiments. We exclude DM masses down to 220 MeV/c2 at 2.7×10-30 cm2 via the bremsstrahlung channel. The Migdal channel search provides overall considerably more stringent limits and excludes DM masses down to 30 MeV/c2 at 5.0×10-30 cm2

    The CUORE cryostat: an infrastructure for rare event searches at millikelvin temperatures

    Full text link
    The CUORE experiment is the world's largest bolometric experiment. The detector consists of an array of 988 TeO2 crystals, for a total mass of 742 kg. CUORE is presently taking data at the Laboratori Nazionali del Gran Sasso, Italy, searching for the neutrinoless double beta decay of 130Te. A large custom cryogen-free cryostat allows reaching and maintaining a base temperature of about 10 mK, required for the optimal operation of the detector. This apparatus has been designed in order to achieve a low noise environment, with minimal contribution to the radioactive background for the experiment. In this paper, we present an overview of the CUORE cryostat, together with a description of all its sub-systems, focusing on the solutions identified to satisfy the stringent requirements. We briefly illustrate the various phases of the cryostat commissioning and highlight the relevant steps and milestones achieved each time. Finally, we describe the successful cooldown of CUORE

    CUORE and beyond: bolometric techniques to explore inverted neutrino mass hierarchy

    Get PDF
    The CUORE (Cryogenic Underground Observatory for Rare Events) experiment will search for neutrinoless double beta decay of 130^{130}Te. With 741 kg of TeO2_2 crystals and an excellent energy resolution of 5 keV (0.2%) at the region of interest, CUORE will be one of the most competitive neutrinoless double beta decay experiments on the horizon. With five years of live time, CUORE projected neutrinoless double beta decay half-life sensitivity is 1.6×10261.6\times 10^{26} y at 1σ1\sigma (9.5×10259.5\times10^{25} y at the 90% confidence level), which corresponds to an upper limit on the effective Majorana mass in the range 40--100 meV (50--130 meV). Further background rejection with auxiliary light detector can significantly improve the search sensitivity and competitiveness of bolometric detectors to fully explore the inverted neutrino mass hierarchy with 130^{130}Te and possibly other double beta decay candidate nuclei.Comment: Submitted to the Proceedings of TAUP 2013 Conferenc

    Exploring the Neutrinoless Double Beta Decay in the Inverted Neutrino Hierarchy with Bolometric Detectors

    Get PDF
    Neutrinoless double beta decay (0nubb) is one of the most sensitive probes for physics beyond the Standard Model, providing unique information on the nature of neutrinos. In this paper we review the status and outlook for bolometric 0nubb decay searches. We summarize recent advances in background suppression demonstrated using bolometers with simultaneous readout of heat and light signals. We simulate several configurations of a future CUORE-like bolometer array which would utilize these improvements and present the sensitivity reach of a hypothetical next-generation bolometric 0nubb experiment. We demonstrate that a bolometric experiment with the isotope mass of about 1 ton is capable of reaching the sensitivity to the effective Majorana neutrino mass (|mee|) of order 10-20 meV, thus completely exploring the so-called inverted neutrino mass hierarchy region. We highlight the main challenges and identify priorities for an R&D program addressing them.Comment: 22 pages, 15 figures, submitted to EPJ

    Search for Neutrinoless Double-Beta Decay of 130^{130}Te with CUORE-0

    Get PDF
    We report the results of a search for neutrinoless double-beta decay in a 9.8~kg\cdotyr exposure of 130^{130}Te using a bolometric detector array, CUORE-0. The characteristic detector energy resolution and background level in the region of interest are 5.1±0.3 keV5.1\pm 0.3{\rm~keV} FWHM and 0.058±0.004(stat.)±0.002(syst.)0.058 \pm 0.004\,(\mathrm{stat.})\pm 0.002\,(\mathrm{syst.})~counts/(keV\cdotkg\cdotyr), respectively. The median 90%~C.L. lower-limit sensitivity of the experiment is 2.9×1024 yr2.9\times 10^{24}~{\rm yr} and surpasses the sensitivity of previous searches. We find no evidence for neutrinoless double-beta decay of 130^{130}Te and place a Bayesian lower bound on the decay half-life, T1/20ν>T^{0\nu}_{1/2}>~2.7×1024 yr 2.7\times 10^{24}~{\rm yr} at 90%~C.L. Combining CUORE-0 data with the 19.75~kg\cdotyr exposure of 130^{130}Te from the Cuoricino experiment we obtain T1/20ν>4.0×1024 yrT^{0\nu}_{1/2} > 4.0\times 10^{24}~\mathrm{yr} at 90%~C.L.~(Bayesian), the most stringent limit to date on this half-life. Using a range of nuclear matrix element estimates we interpret this as a limit on the effective Majorana neutrino mass, mββ<270m_{\beta\beta}< 270 -- 760 meV760~\mathrm{meV}.Comment: 6 pages, 5 figures, updated version as published in PR

    CUORE-0 results and prospects for the CUORE experiment

    Full text link
    With 741 kg of TeO2 crystals and an excellent energy resolution of 5 keV (0.2%) at the region of interest, the CUORE (Cryogenic Underground Observatory for Rare Events) experiment aims at searching for neutrinoless double beta decay of 130Te with unprecedented sensitivity. Expected to start data taking in 2015, CUORE is currently in an advanced construction phase at LNGS. CUORE projected neutrinoless double beta decay half-life sensitivity is 1.6E26 y at 1 sigma (9.5E25 y at the 90% confidence level), in five years of live time, corresponding to an upper limit on the effective Majorana mass in the range 40-100 meV (50-130 meV). Further background rejection with auxiliary bolometric detectors could improve CUORE sensitivity and competitiveness of bolometric detectors towards a full analysis of the inverted neutrino mass hierarchy. CUORE-0 was built to test and demonstrate the performance of the upcoming CUORE experiment. It consists of a single CUORE tower (52 TeO2 bolometers of 750 g each, arranged in a 13 floor structure) constructed strictly following CUORE recipes both for materials and assembly procedures. An experiment its own, CUORE-0 is expected to reach a sensitivity to the neutrinoless double beta decay half-life of 130Te around 3E24 y in one year of live time. We present an update of the data, corresponding to an exposure of 18.1 kg y. An analysis of the background indicates that the CUORE performance goal is satisfied while the sensitivity goal is within reach.Comment: 10 pages, 3 figures, to appear in the proceedings of NEUTRINO 2014, 26th International Conference on Neutrino Physics and Astrophysics, 2-7 June 2014, held at Boston, Massachusetts, US
    corecore