275 research outputs found
Radon Emanation Techniques and Measurements for LZ
Radon emanation was projected to account for % of the electron recoil
background in the WIMP region of interest for the LUX-ZEPLIN (LZ) experiment.
To mitigate the amount of radon inside the detector volume, materials with
inherently low radioactivity content were selected for LZ construction through
an extensive screening campaign. The SD Mines radon emanation system was one of
four emanation facilities utilized to screen materials during construction of
LZ. SD Mines also employed a portable radon collection system for equipment too
large or delicate to move to a radon emanation facility. This portable system
was used to assay the Inner Cryostat Vessel in-situ at various stages of
detector construction, resulting in the inference that the titanium cryostat is
the source of significant radon emanation. Assays of a Th source
confirmed that its Rn emanation is low enough for it to be used, and
that 14% of the Rn emanates from the source at room temperature.Comment: 6 pages, 4 figures, submitted to LRT 2022 Conference Proceeding
Classical-quantum correspondence in electron-positron pair creation
We examine the creation of electron-positron pairs in a very strong force field. Using numerical solutions to quantum field theory we calculate the spatial and momentum probability distributions for the created particles. A comparison with classical mechanical phase space calculations suggests that despite the fully relativistic and quantum mechanical nature of the matter creation process, most aspects can be reproduced accurately in terms of classical mechanics
The CUORE Cryostat: A 1-Ton Scale Setup for Bolometric Detectors
The cryogenic underground observatory for rare events (CUORE) is a 1-ton
scale bolometric experiment whose detector consists of an array of 988 TeO2
crystals arranged in a cylindrical compact structure of 19 towers. This will be
the largest bolometric mass ever operated. The experiment will work at a
temperature around or below 10 mK. CUORE cryostat consists of a cryogen-free
system based on pulse tubes and a custom high power dilution refrigerator,
designed to match these specifications. The cryostat has been commissioned in
2014 at the Gran Sasso National Laboratories and reached a record temperature
of 6 mK on a cubic meter scale. In this paper, we present results of CUORE
commissioning runs. Details on the thermal characteristics and cryogenic
performances of the system will be also given.Comment: 7 pages, 2 figures, LTD16 conference proceedin
Search for low-mass dark matter via bremsstrahlung radiation and the Migdal effect in SuperCDMS
We present a new analysis of previously published SuperCDMS data using a profile likelihood framework to search for sub-GeV dark matter (DM) particles through two inelastic scattering channels: bremsstrahlung radiation and the Migdal effect. By considering these possible inelastic scattering channels, experimental sensitivity can be extended to DM masses that are undetectable through the DM-nucleon elastic scattering channel, given the energy threshold of current experiments. We exclude DM masses down to 220 MeV/c2 at 2.7×10-30 cm2 via the bremsstrahlung channel. The Migdal channel search provides overall considerably more stringent limits and excludes DM masses down to 30 MeV/c2 at 5.0×10-30 cm2
The CUORE cryostat: an infrastructure for rare event searches at millikelvin temperatures
The CUORE experiment is the world's largest bolometric experiment. The
detector consists of an array of 988 TeO2 crystals, for a total mass of 742 kg.
CUORE is presently taking data at the Laboratori Nazionali del Gran Sasso,
Italy, searching for the neutrinoless double beta decay of 130Te. A large
custom cryogen-free cryostat allows reaching and maintaining a base temperature
of about 10 mK, required for the optimal operation of the detector. This
apparatus has been designed in order to achieve a low noise environment, with
minimal contribution to the radioactive background for the experiment. In this
paper, we present an overview of the CUORE cryostat, together with a
description of all its sub-systems, focusing on the solutions identified to
satisfy the stringent requirements. We briefly illustrate the various phases of
the cryostat commissioning and highlight the relevant steps and milestones
achieved each time. Finally, we describe the successful cooldown of CUORE
CUORE and beyond: bolometric techniques to explore inverted neutrino mass hierarchy
The CUORE (Cryogenic Underground Observatory for Rare Events) experiment will
search for neutrinoless double beta decay of Te. With 741 kg of TeO
crystals and an excellent energy resolution of 5 keV (0.2%) at the region of
interest, CUORE will be one of the most competitive neutrinoless double beta
decay experiments on the horizon. With five years of live time, CUORE projected
neutrinoless double beta decay half-life sensitivity is y
at ( y at the 90% confidence level), which
corresponds to an upper limit on the effective Majorana mass in the range
40--100 meV (50--130 meV). Further background rejection with auxiliary light
detector can significantly improve the search sensitivity and competitiveness
of bolometric detectors to fully explore the inverted neutrino mass hierarchy
with Te and possibly other double beta decay candidate nuclei.Comment: Submitted to the Proceedings of TAUP 2013 Conferenc
Exploring the Neutrinoless Double Beta Decay in the Inverted Neutrino Hierarchy with Bolometric Detectors
Neutrinoless double beta decay (0nubb) is one of the most sensitive probes
for physics beyond the Standard Model, providing unique information on the
nature of neutrinos. In this paper we review the status and outlook for
bolometric 0nubb decay searches. We summarize recent advances in background
suppression demonstrated using bolometers with simultaneous readout of heat and
light signals. We simulate several configurations of a future CUORE-like
bolometer array which would utilize these improvements and present the
sensitivity reach of a hypothetical next-generation bolometric 0nubb
experiment. We demonstrate that a bolometric experiment with the isotope mass
of about 1 ton is capable of reaching the sensitivity to the effective Majorana
neutrino mass (|mee|) of order 10-20 meV, thus completely exploring the
so-called inverted neutrino mass hierarchy region. We highlight the main
challenges and identify priorities for an R&D program addressing them.Comment: 22 pages, 15 figures, submitted to EPJ
Search for Neutrinoless Double-Beta Decay of Te with CUORE-0
We report the results of a search for neutrinoless double-beta decay in a
9.8~kgyr exposure of Te using a bolometric detector array,
CUORE-0. The characteristic detector energy resolution and background level in
the region of interest are FWHM and ~counts/(keVkgyr), respectively. The
median 90%~C.L. lower-limit sensitivity of the experiment is and surpasses the sensitivity of previous searches. We find
no evidence for neutrinoless double-beta decay of Te and place a
Bayesian lower bound on the decay half-life, ~ at 90%~C.L. Combining CUORE-0 data with the 19.75~kgyr
exposure of Te from the Cuoricino experiment we obtain at 90%~C.L.~(Bayesian), the most stringent
limit to date on this half-life. Using a range of nuclear matrix element
estimates we interpret this as a limit on the effective Majorana neutrino mass,
-- .Comment: 6 pages, 5 figures, updated version as published in PR
CUORE-0 results and prospects for the CUORE experiment
With 741 kg of TeO2 crystals and an excellent energy resolution of 5 keV
(0.2%) at the region of interest, the CUORE (Cryogenic Underground Observatory
for Rare Events) experiment aims at searching for neutrinoless double beta
decay of 130Te with unprecedented sensitivity. Expected to start data taking in
2015, CUORE is currently in an advanced construction phase at LNGS. CUORE
projected neutrinoless double beta decay half-life sensitivity is 1.6E26 y at 1
sigma (9.5E25 y at the 90% confidence level), in five years of live time,
corresponding to an upper limit on the effective Majorana mass in the range
40-100 meV (50-130 meV). Further background rejection with auxiliary bolometric
detectors could improve CUORE sensitivity and competitiveness of bolometric
detectors towards a full analysis of the inverted neutrino mass hierarchy.
CUORE-0 was built to test and demonstrate the performance of the upcoming CUORE
experiment. It consists of a single CUORE tower (52 TeO2 bolometers of 750 g
each, arranged in a 13 floor structure) constructed strictly following CUORE
recipes both for materials and assembly procedures. An experiment its own,
CUORE-0 is expected to reach a sensitivity to the neutrinoless double beta
decay half-life of 130Te around 3E24 y in one year of live time. We present an
update of the data, corresponding to an exposure of 18.1 kg y. An analysis of
the background indicates that the CUORE performance goal is satisfied while the
sensitivity goal is within reach.Comment: 10 pages, 3 figures, to appear in the proceedings of NEUTRINO 2014,
26th International Conference on Neutrino Physics and Astrophysics, 2-7 June
2014, held at Boston, Massachusetts, US
- …