39 research outputs found

    An Unusual Transmission Spectrum for the Sub-Saturn KELT-11b Suggestive of a Sub-Solar Water Abundance

    Full text link
    We present an optical-to-infrared transmission spectrum of the inflated sub-Saturn KELT-11b measured with the Transiting Exoplanet Survey Satellite (TESS), the Hubble Space Telescope (HST) Wide Field Camera 3 G141 spectroscopic grism, and the Spitzer Space Telescope (Spitzer) at 3.6 μ\mum, in addition to a Spitzer 4.5 μ\mum secondary eclipse. The precise HST transmission spectrum notably reveals a low-amplitude water feature with an unusual shape. Based on free retrieval analyses with varying molecular abundances, we find strong evidence for water absorption. Depending on model assumptions, we also find tentative evidence for other absorbers (HCN, TiO, and AlO). The retrieved water abundance is generally ≲0.1×\lesssim 0.1\times solar (0.001--0.7×\times solar over a range of model assumptions), several orders of magnitude lower than expected from planet formation models based on the solar system metallicity trend. We also consider chemical equilibrium and self-consistent 1D radiative-convective equilibrium model fits and find they too prefer low metallicities ([M/H]≲−2[M/H] \lesssim -2, consistent with the free retrieval results). However, all the retrievals should be interpreted with some caution since they either require additional absorbers that are far out of chemical equilibrium to explain the shape of the spectrum or are simply poor fits to the data. Finally, we find the Spitzer secondary eclipse is indicative of full heat redistribution from KELT-11b's dayside to nightside, assuming a clear dayside. These potentially unusual results for KELT-11b's composition are suggestive of new challenges on the horizon for atmosphere and formation models in the face of increasingly precise measurements of exoplanet spectra.Comment: Accepted to The Astronomical Journal. 31 pages, 20 figures, 7 table

    Computational Design of Auxotrophy-Dependent Microbial Biosensors for Combinatorial Metabolic Engineering Experiments

    Get PDF
    Combinatorial approaches in metabolic engineering work by generating genetic diversity in a microbial population followed by screening for strains with improved phenotypes. One of the most common goals in this field is the generation of a high rate chemical producing strain. A major hurdle with this approach is that many chemicals do not have easy to recognize attributes, making their screening expensive and time consuming. To address this problem, it was previously suggested to use microbial biosensors to facilitate the detection and quantification of chemicals of interest. Here, we present novel computational methods to: (i) rationally design microbial biosensors for chemicals of interest based on substrate auxotrophy that would enable their high-throughput screening; (ii) predict engineering strategies for coupling the synthesis of a chemical of interest with the production of a proxy metabolite for which high-throughput screening is possible via a designed bio-sensor. The biosensor design method is validated based on known genetic modifications in an array of E. coli strains auxotrophic to various amino-acids. Predicted chemical production rates achievable via the biosensor-based approach are shown to potentially improve upon those predicted by current rational strain design approaches. (A Matlab implementation of the biosensor design method is available via http://www.cs.technion.ac.il/~tomersh/tools)

    Human fibroblast growth factor 1 gene expression in vascular smooth muscle cells is modulated via an alternate promoter in response to serum and phorbol ester.

    No full text
    We have previously isolated the human FGF-1 gene in order to elucidate the molecular basis of its gene expression. The gene spans over 100 kbp and encodes multiple transcripts expressed in a tissue- and cell-specific manner. Two variants of FGF-1 mRNA (designated FGF-1.A and 1.B), which differ in their 5' untranslated region, were identified in our laboratory. Recently, two novel variants of FGF-1 mRNA (designated FGF-1.C and 1.D) have been isolated. In this study we used RNase protection assays to demonstrate expression of FGF-1.D mRNA in human fibroblasts and vascular smooth muscle cells and to show that promoter 1D has multiple transcription start sites. A single-strand nuclease-sensitive region has also been identified in the promoter 1D region that may have implications in chromatin conformation and transcriptional regulation of this promoter. Using Northern blot hybridization analyses, a previous study demonstrated a significant increase of FGF-1 mRNA levels in cultured saphenous vein smooth muscle cells in response to serum and phorbol ester. Here we confirm these results by RNase protection analysis and show that FGF-1.C mRNA is significantly increased in response to these stimuli. RNase protection assays indicate that promoter 1C has one major start site. The phorbol ester effect suggests that a protein kinase C-dependent signalling pathway may be involved in this phenomenon. Our results point to a dual promoter usage of the FGF-1 gene in vascular smooth muscle cells. Thus, normal growing cells primarily utilize promoter 1D. In contrast, quiescent cells, when exposed to serum or phorbol ester, utilize a different FGF-1 promoter, namely promoter 1C. Overall, these phenomena suggest mechanisms for increased production of FGF-1 that may play a role in inflammatory settings, wound healing, tissue repair, and neovascularization events and processes via autocrine and paracrine mechanisms. Our findings suggest that different FGF-1 promoters may respond to different physiological conditions and stimuli, in reference to the cell type or tissue milieu, resulting in ultimate production of the FGF-1 protein

    Addicted schoolchildren: prevalence and characteristics of areca nut chewers among primary school children in Karachi, Pakistan

    No full text
    Objectives: To evaluate the habits of betel quid use and areca nut chewing among school-aged children in Karachi, Pakistan. Areca nut (betel nut) is chewed by itself, in various scented preparations, and in betel quid (containing betel leaf, areca nut, slaked lime, condiments, sweeteners and sometimes tobacco) in various parts of Pakistan and India. It is associated with carcinogenesis, foreign body aspiration in children and oral submucous fibrosis, and may aggravate asthma.Methods: We selected a stratified random sample of 160 primary school children between 4 and 16 years of age in Baba Island, Karachi.Results: Seventy-four per cent of the children (118/159) used areca nut and 35% (55/159) used betel quid daily. More boys chewed areca nut than girls (72% vs 30%). The proportion of areca nut users increased by grade (from 48% in first grade to 90% in fifth grade). Most areca users first tried it with a family member (42%) or a friend (26%), and most (68%) consumed three or more packets a day. Children with fathers with three or fewer years of education were more likely to use areca nut (OR 3.2; 95% CI 1.2-8.4), and children whose mothers helped with homework less likely (OR 0.5; 95% CI 0.2-0.91; P = 0.027) to use it. Boys (OR 6.6; 95% CI 2.3-18.7) and areca nut users (OR 8.8; 95% CI2.8-27.0) were more likely to use betel quid.CONCLUSION: To reduce the use of areca nut, the Pakistan Government should consider imposing taxes on it, limiting advertising and actively communicating its health risks to the public
    corecore