51 research outputs found

    Geometrical Well Posed Systems for the Einstein Equations

    Get PDF
    We show that, given an arbitrary shift, the lapse NN can be chosen so that the extrinsic curvature KK of the space slices with metric g‾\overline g in arbitrary coordinates of a solution of Einstein's equations satisfies a quasi-linear wave equation. We give a geometric first order symmetric hyperbolic system verified in vacuum by g‾\overline g, KK and NN. We show that one can also obtain a quasi-linear wave equation for KK by requiring NN to satisfy at each time an elliptic equation which fixes the value of the mean extrinsic curvature of the space slices.Comment: 13 pages, latex, no figure

    Conformal ``thin sandwich'' data for the initial-value problem of general relativity

    Full text link
    The initial-value problem is posed by giving a conformal three-metric on each of two nearby spacelike hypersurfaces, their proper-time separation up to a multiplier to be determined, and the mean (extrinsic) curvature of one slice. The resulting equations have the {\it same} elliptic form as does the one-hypersurface formulation. The metrical roots of this form are revealed by a conformal ``thin sandwich'' viewpoint coupled with the transformation properties of the lapse function.Comment: 7 pages, RevTe

    Geometrical Hyperbolic Systems for General Relativity and Gauge Theories

    Full text link
    The evolution equations of Einstein's theory and of Maxwell's theory---the latter used as a simple model to illustrate the former--- are written in gauge covariant first order symmetric hyperbolic form with only physically natural characteristic directions and speeds for the dynamical variables. Quantities representing gauge degrees of freedom [the spatial shift vector βi(t,xj)\beta^{i}(t,x^{j}) and the spatial scalar potential ϕ(t,xj)\phi(t,x^{j}), respectively] are not among the dynamical variables: the gauge and the physical quantities in the evolution equations are effectively decoupled. For example, the gauge quantities could be obtained as functions of (t,xj)(t,x^{j}) from subsidiary equations that are not part of the evolution equations. Propagation of certain (``radiative'') dynamical variables along the physical light cone is gauge invariant while the remaining dynamical variables are dragged along the axes orthogonal to the spacelike time slices by the propagating variables. We obtain these results by (1)(1) taking a further time derivative of the equation of motion of the canonical momentum, and (2)(2) adding a covariant spatial derivative of the momentum constraints of general relativity (Lagrange multiplier βi\beta^{i}) or of the Gauss's law constraint of electromagnetism (Lagrange multiplier ϕ\phi). General relativity also requires a harmonic time slicing condition or a specific generalization of it that brings in the Hamiltonian constraint when we pass to first order symmetric form. The dynamically propagating gravity fields straightforwardly determine the ``electric'' or ``tidal'' parts of the Riemann tensor.Comment: 24 pages, latex, no figure

    Einstein and Yang-Mills theories in hyperbolic form without gauge-fixing

    Full text link
    The evolution of physical and gauge degrees of freedom in the Einstein and Yang-Mills theories are separated in a gauge-invariant manner. We show that the equations of motion of these theories can always be written in flux-conservative first-order symmetric hyperbolic form. This dynamical form is ideal for global analysis, analytic approximation methods such as gauge-invariant perturbation theory, and numerical solution.Comment: 12 pages, revtex3.0, no figure

    Geometrically motivated hyperbolic coordinate conditions for numerical relativity: Analysis, issues and implementations

    Full text link
    We study the implications of adopting hyperbolic driver coordinate conditions motivated by geometrical considerations. In particular, conditions that minimize the rate of change of the metric variables. We analyze the properties of the resulting system of equations and their effect when implementing excision techniques. We find that commonly used coordinate conditions lead to a characteristic structure at the excision surface where some modes are not of outflow-type with respect to any excision boundary chosen inside the horizon. Thus, boundary conditions are required for these modes. Unfortunately, the specification of these conditions is a delicate issue as the outflow modes involve both gauge and main variables. As an alternative to these driver equations, we examine conditions derived from extremizing a scalar constructed from Killing's equation and present specific numerical examples.Comment: 9 figure

    Hamiltonian Time Evolution for General Relativity

    Get PDF
    Hamiltonian time evolution in terms of an explicit parameter time is derived for general relativity, even when the constraints are not satisfied, from the Arnowitt-Deser-Misner-Teitelboim-Ashtekar action in which the slicing density α(x,t)\alpha(x,t) is freely specified while the lapse N=αg1/2N=\alpha g^{1/2} is not. The constraint ``algebra'' becomes a well-posed evolution system for the constraints; this system is the twice-contracted Bianchi identity when Rij=0R_{ij}=0. The Hamiltonian constraint is an initial value constraint which determines g1/2g^{1/2} and hence NN, given α\alpha.Comment: 4 pages, revtex, to appear in Phys. Rev. Let

    Uniqueness and Non-uniqueness in the Einstein Constraints

    Get PDF
    The conformal thin sandwich (CTS) equations are a set of four of the Einstein equations, which generalize the Laplace-Poisson equation of Newton's theory. We examine numerically solutions of the CTS equations describing perturbed Minkowski space, and find only one solution. However, we find {\em two} distinct solutions, one even containing a black hole, when the lapse is determined by a fifth elliptic equation through specification of the mean curvature. While the relationship of the two systems and their solutions is a fundamental property of general relativity, this fairly simple example of an elliptic system with non-unique solutions is also of broader interest.Comment: 4 pages, 4 figures; abstract and introduction rewritte
    • …
    corecore