51 research outputs found
Geometrical Well Posed Systems for the Einstein Equations
We show that, given an arbitrary shift, the lapse can be chosen so that
the extrinsic curvature of the space slices with metric in
arbitrary coordinates of a solution of Einstein's equations satisfies a
quasi-linear wave equation. We give a geometric first order symmetric
hyperbolic system verified in vacuum by , and . We show
that one can also obtain a quasi-linear wave equation for by requiring
to satisfy at each time an elliptic equation which fixes the value of the mean
extrinsic curvature of the space slices.Comment: 13 pages, latex, no figure
Conformal ``thin sandwich'' data for the initial-value problem of general relativity
The initial-value problem is posed by giving a conformal three-metric on each
of two nearby spacelike hypersurfaces, their proper-time separation up to a
multiplier to be determined, and the mean (extrinsic) curvature of one slice.
The resulting equations have the {\it same} elliptic form as does the
one-hypersurface formulation. The metrical roots of this form are revealed by a
conformal ``thin sandwich'' viewpoint coupled with the transformation
properties of the lapse function.Comment: 7 pages, RevTe
Geometrical Hyperbolic Systems for General Relativity and Gauge Theories
The evolution equations of Einstein's theory and of Maxwell's theory---the
latter used as a simple model to illustrate the former--- are written in gauge
covariant first order symmetric hyperbolic form with only physically natural
characteristic directions and speeds for the dynamical variables. Quantities
representing gauge degrees of freedom [the spatial shift vector
and the spatial scalar potential ,
respectively] are not among the dynamical variables: the gauge and the physical
quantities in the evolution equations are effectively decoupled. For example,
the gauge quantities could be obtained as functions of from
subsidiary equations that are not part of the evolution equations. Propagation
of certain (``radiative'') dynamical variables along the physical light cone is
gauge invariant while the remaining dynamical variables are dragged along the
axes orthogonal to the spacelike time slices by the propagating variables. We
obtain these results by taking a further time derivative of the equation
of motion of the canonical momentum, and adding a covariant spatial
derivative of the momentum constraints of general relativity (Lagrange
multiplier ) or of the Gauss's law constraint of electromagnetism
(Lagrange multiplier ). General relativity also requires a harmonic time
slicing condition or a specific generalization of it that brings in the
Hamiltonian constraint when we pass to first order symmetric form. The
dynamically propagating gravity fields straightforwardly determine the
``electric'' or ``tidal'' parts of the Riemann tensor.Comment: 24 pages, latex, no figure
Einstein and Yang-Mills theories in hyperbolic form without gauge-fixing
The evolution of physical and gauge degrees of freedom in the Einstein and
Yang-Mills theories are separated in a gauge-invariant manner. We show that the
equations of motion of these theories can always be written in
flux-conservative first-order symmetric hyperbolic form. This dynamical form is
ideal for global analysis, analytic approximation methods such as
gauge-invariant perturbation theory, and numerical solution.Comment: 12 pages, revtex3.0, no figure
Geometrically motivated hyperbolic coordinate conditions for numerical relativity: Analysis, issues and implementations
We study the implications of adopting hyperbolic driver coordinate conditions
motivated by geometrical considerations. In particular, conditions that
minimize the rate of change of the metric variables. We analyze the properties
of the resulting system of equations and their effect when implementing
excision techniques. We find that commonly used coordinate conditions lead to a
characteristic structure at the excision surface where some modes are not of
outflow-type with respect to any excision boundary chosen inside the horizon.
Thus, boundary conditions are required for these modes. Unfortunately, the
specification of these conditions is a delicate issue as the outflow modes
involve both gauge and main variables. As an alternative to these driver
equations, we examine conditions derived from extremizing a scalar constructed
from Killing's equation and present specific numerical examples.Comment: 9 figure
Hamiltonian Time Evolution for General Relativity
Hamiltonian time evolution in terms of an explicit parameter time is derived
for general relativity, even when the constraints are not satisfied, from the
Arnowitt-Deser-Misner-Teitelboim-Ashtekar action in which the slicing density
is freely specified while the lapse is not.
The constraint ``algebra'' becomes a well-posed evolution system for the
constraints; this system is the twice-contracted Bianchi identity when
. The Hamiltonian constraint is an initial value constraint which
determines and hence , given .Comment: 4 pages, revtex, to appear in Phys. Rev. Let
Uniqueness and Non-uniqueness in the Einstein Constraints
The conformal thin sandwich (CTS) equations are a set of four of the Einstein
equations, which generalize the Laplace-Poisson equation of Newton's theory. We
examine numerically solutions of the CTS equations describing perturbed
Minkowski space, and find only one solution. However, we find {\em two}
distinct solutions, one even containing a black hole, when the lapse is
determined by a fifth elliptic equation through specification of the mean
curvature. While the relationship of the two systems and their solutions is a
fundamental property of general relativity, this fairly simple example of an
elliptic system with non-unique solutions is also of broader interest.Comment: 4 pages, 4 figures; abstract and introduction rewritte
- …