9 research outputs found

    Maximal Hypersurfaces and Positivity of Mass

    Get PDF
    N/

    Spacelike surfaces with free boundary in the Lorentz-Minkowski space

    Full text link
    We investigate a variational problem in the Lorentz-Minkowski space \l^3 whose critical points are spacelike surfaces with constant mean curvature and making constant contact angle with a given support surface along its common boundary. We show that if the support surface is a pseudosphere, then the surface is a planar disc or a hyperbolic cap. We also study the problem of spacelike hypersurfaces with free boundary in the higher dimensional Lorentz-Minkowski space \l^{n+1}.Comment: 16 pages. Accepted in Classical and Quantum Gravit

    Covariant gauge fixing and Kuchar decomposition

    Get PDF
    The symplectic geometry of a broad class of generally covariant models is studied. The class is restricted so that the gauge group of the models coincides with the Bergmann-Komar group and the analysis can focus on the general covariance. A geometrical definition of gauge fixing at the constraint manifold is given; it is equivalent to a definition of a background (spacetime) manifold for each topological sector of a model. Every gauge fixing defines a decomposition of the constraint manifold into the physical phase space and the space of embeddings of the Cauchy manifold into the background manifold (Kuchar decomposition). Extensions of every gauge fixing and the associated Kuchar decomposition to a neighbourhood of the constraint manifold are shown to exist.Comment: Revtex, 35 pages, no figure

    Nonlinear quantum gravity on the constant mean curvature foliation

    Full text link
    A new approach to quantum gravity is presented based on a nonlinear quantization scheme for canonical field theories with an implicitly defined Hamiltonian. The constant mean curvature foliation is employed to eliminate the momentum constraints in canonical general relativity. It is, however, argued that the Hamiltonian constraint may be advantageously retained in the reduced classical system to be quantized. This permits the Hamiltonian constraint equation to be consistently turned into an expectation value equation on quantization that describes the scale factor on each spatial hypersurface characterized by a constant mean exterior curvature. This expectation value equation augments the dynamical quantum evolution of the unconstrained conformal three-geometry with a transverse traceless momentum tensor density. The resulting quantum theory is inherently nonlinear. Nonetheless, it is unitary and free from a nonlocal and implicit description of the Hamiltonian operator. Finally, by imposing additional homogeneity symmetries, a broad class of Bianchi cosmological models are analyzed as nonlinear quantum minisuperspaces in the context of the proposed theory.Comment: 14 pages. Classical and Quantum Gravity (To appear

    A SURVEY OF NEUROENDOCRINE PHENOMENA IN NON-ARTHROPOD INVERTEBRATES

    No full text
    corecore