7 research outputs found

    An interfacially plasticized electro-responsive hydrogel for transdermal electro-activated and modulated (TEAM) drug delivery

    Get PDF
    This paper highlights the use of hydrogels in controlled drug delivery, and their application in stimuli responsive, especially electro-responsive, drug release. electro-conductive hydrogels (ECHs) displaying electro-responsive drug release were synthesized from semi-interpenetrating networks (semi-IPNs) containing a poly(ethyleneimine) (PEI) and 1-vinylimidazole (VI) polymer blend as the novel electro-active species. The semi-IPNs are systems comprised of polyacrylic acid (PAA) and poly(vinyl alcohol) (PVA). This paper attempts to investigate the various attributes of the electro-responsive ECHs, through institution of a statistical experimental design. The construction of a Box-Behnken design model was employed for the systematic optimization of the ECH composition. The design model comprised of three variables, viz. poly(ethyleneimine) volume; 1-vinylimidazole volume; and applied voltage, critical to the success of the formulation. Electro-responsive drug release was determined on formulations exposed to varying environments to ascertain the optimal environment for the said desired release. A comparison method of formulation water content and swelling through gravimetric analysis was also conducted. Matrix resilience profiles were obtained as an insight to the ability of the ECH to revert to its original structure following applied stress. Response surface and contour plots were constructed for various response variables, namely electro-responsive drug release, matrix resilience and degree of swelling. The outcomes of the study demonstrated the success of electro-responsive drug release. The findings of the study can be utilized for the development of electro-responsive delivery systems of other drugs for the safer and effective drug delivery. Volumes of poly(ethyleneimine) (>2.6 mL) and 1-vinylimidazole (>0.7 mL), resulted in ideal therapeutic electro-responsive drug release (0.8 mg) for indomethacin. Lower amounts of poly(ethyleneimine) and amounts of 1-vinylimidazole ranging from 0.2 to 0.74 mL are consistent with greater than 1.6 mg release per stimulation. Swelling o

    In Vitro and In Vivo evaluation of a hydrogel-based microneedle device for transdermal electro-modulated analgesia

    No full text
    With a significant portion of the world suffering from chronic pain, the management and treatment of this condition still requires extensive research to successfully mobilize and functionalize its sufferers. This article details the in vitro and in vivo evaluation of a transdermal electro-modulated hydrogel-microneedle array (EMHM) device for the treatment of chronic pain. In vitro characterization of the electro-modulated hydrogel was undertaken before the determination of the in vivo release, histopathologic and pharmacokinetic profiles of the EMHM in a Sprague Dawley rat model. Pharmacokinetic modeling was conducted to establish a level A in vitro-in vivo correlation. Data analysis was carried out by segmenting the combined in vivo release profile into individualistic profiles before analysis

    Ex vivo evaluation of a microneedle array device for transdermal application

    No full text
    A new approach of transdermal drug delivery is the use of microneedles. This promising technique offers the potential to be broadly used for drug administration as it enables the dramatic increase in permeation of medicaments across the stratum corneum. The potential of microneedles has evolved to spawn a plethora of potential transdermal applications. In order to advance the microneedle capabilities and possibly revolutionize advanced drug delivery, this study introduces a novel transdermal electro-modulated hydrogel-microneedle array (EMH-MNA) device composed of a nano-porous, embeddable ceramic microneedle array as well as an optimized EMH for the electro-responsive delivery of indomethacin through the skin. The ex vivo permeation as well as drug release experiments were performed on porcine skin tissue to ascertain the electro-responsive capabilities of the device. In addition, the microbial permeation ability of the microneedles across the viable epidermis in both microneedle-punctured skin as well as hypodermic needle-punctured skin was determined. Ex vivo evaluation of the EMH-MNA device across porcine skin demonstrated that without electro-stimulation, significantly less drug release was obtained (±0.4540 mg) as compared to electro-stimulation (±2.93 mg)
    corecore