13 research outputs found

    The identification and deletion of the polyketide synthase-nonribosomal peptide synthase gene responsible for the production of the phytotoxic triticone A/B in the wheat fungal pathogen Pyrenophora tritici-repentis

    Get PDF
    The economically important necrotrophic fungal pathogen, Pyrenophora tritici-repentis (Ptr), causes tan spot of wheat, a disease typified by foliar necrosis and chlorosis. The culture filtrate of an Australian Ptr isolate, M4, possesses phytotoxic activity and plant bioassay guided discovery led to the purification of necrosis inducing toxins called triticone A and B. High-resolution LC–MS/MS analysis of the culture filtrate identified an additional 37 triticone-like compounds. The biosynthetic gene cluster responsible for triticone production (the Ttc cluster) was identified and deletion of TtcA, a hybrid polyketide synthase (PKS)-nonribosomal peptide synthase (NRPS), abolished production of all triticones. The pathogenicity of mutant (ttcA) strains was not visibly affected in our assays. We hypothesize that triticones possess general antimicrobial activity important for competition in multi-microbial environments

    Heterologous expression of cytotoxic sesquiterpenoids from the medicinal mushroom Lignosus rhinocerotis in yeast

    Get PDF
    Background: Genome mining facilitated by heterologous systems is an emerging approach to access the chemical diversity encoded in basidiomycete genomes. In this study, three sesquiterpene synthase genes, GME3634, GME3638, and GME9210, which were highly expressed in the sclerotium of the medicinal mushroom Lignosus rhinocerotis, were cloned and heterologously expressed in a yeast system. Results: Metabolite profile analysis of the yeast culture extracts by GC-MS showed the production of several sesquiterpene alcohols (C 15 H 26 O), including cadinols and germacrene D-4-ol as major products. Other detected sesquiterpenes include selina-6-en-4-ol, ß-elemene, ß-cubebene, and cedrene. Two purified major compounds namely (+)-torreyol and a-cadinol synthesised by GME3638 and GME3634 respectively, are stereoisomers and their chemical structures were confirmed by 1 H and 13 C NMR. Phylogenetic analysis revealed that GME3638 and GME3634 are a pair of orthologues, and are grouped together with terpene synthases that synthesise cadinenes and related sesquiterpenes. (+)-Torreyol and a-cadinol were tested against a panel of human cancer cell lines and the latter was found to exhibit selective potent cytotoxicity in breast adenocarcinoma cells (MCF7) with IC 50 value of 3.5 ± 0.58 ”g/ml while a-cadinol is less active (IC 50 = 18.0 ± 3.27 ”g/ml). Conclusions: This demonstrates that yeast-based genome mining, guided by transcriptomics, is a promising approach for uncovering bioactive compounds from medicinal mushrooms

    CAGECAT: The CompArative GEne Cluster Analysis Toolbox for rapid search and visualisation of homologous gene clusters

    Get PDF
    Abstract Background Co-localized sets of genes that encode specialized functions are common across microbial genomes and occur in genomes of larger eukaryotes as well. Important examples include Biosynthetic Gene Clusters (BGCs) that produce specialized metabolites with medicinal, agricultural, and industrial value (e.g. antimicrobials). Comparative analysis of BGCs can aid in the discovery of novel metabolites by highlighting distribution and identifying variants in public genomes. Unfortunately, gene-cluster-level homology detection remains inaccessible, time-consuming and difficult to interpret. Results The comparative gene cluster analysis toolbox (CAGECAT) is a rapid and user-friendly platform to mitigate difficulties in comparative analysis of whole gene clusters. The software provides homology searches and downstream analyses without the need for command-line or programming expertise. By leveraging remote BLAST databases, which always provide up-to-date results, CAGECAT can yield relevant matches that aid in the comparison, taxonomic distribution, or evolution of an unknown query. The service is extensible and interoperable and implements the cblaster and clinker pipelines to perform homology search, filtering, gene neighbourhood estimation, and dynamic visualisation of resulting variant BGCs. With the visualisation module, publication-quality figures can be customized directly from a web-browser, which greatly accelerates their interpretation via informative overlays to identify conserved genes in a BGC query. Conclusion Overall, CAGECAT is an extensible software that can be interfaced via a standard web-browser for whole region homology searches and comparison on continually updated genomes from NCBI. The public web server and installable docker image are open source and freely available without registration at: https://cagecat.bioinformatics.nl
    corecore