107 research outputs found
Quantum Computing for MIMO Beam Selection Problem: Model and Optical Experimental Solution
Massive multiple-input multiple-output (MIMO) has gained widespread
popularity in recent years due to its ability to increase data rates, improve
signal quality, and provide better coverage in challenging environments. In
this paper, we investigate the MIMO beam selection (MBS) problem, which is
proven to be NP-hard and computationally intractable. To deal with this
problem, quantum computing that can provide faster and more efficient solutions
to large-scale combinatorial optimization is considered. MBS is formulated in a
quadratic unbounded binary optimization form and solved with Coherent Ising
Machine (CIM) physical machine. We compare the performance of our solution with
two classic heuristics, simulated annealing and Tabu search. The results
demonstrate an average performance improvement by a factor of 261.23 and 20.6,
respectively, which shows that CIM-based solution performs significantly better
in terms of selecting the optimal subset of beams. This work shows great
promise for practical 5G operation and promotes the application of quantum
computing in solving computationally hard problems in communication.Comment: Accepted by IEEE Globecom 202
Construction and Evaluation of the Brucella Double Gene Knock-out Vaccine Strain MB6 Δbp26ΔwboA (RM6)
Brucellosis is a serious zoonotic infection worldwide. To date, vaccination is the most effective measure against brucellosis. This study was aimed at obtaining a vaccine strain that has high protective efficacy and low toxicity, and allows vaccination to be differentiated from infection. Using homologous recombination, we constructed a double gene-deletion Brucella strain MB6 Δbp26ΔwboA (RM6) and evaluated its characteristics, safety and efficacy. The RM6 strain had good proliferative ability and stable biological characteristics in vivo and in vitro. Moreover, it had a favorable safety profile and elicited specific immune responses in mice and sheep. The RM6 strain may have substantial practical application value
Development and Efficacy Evaluation of an SP01-adjuvanted Inactivated Escherichia Coli Mutant Vaccine Against Bovine Coliform Mastitis
Escherichia coli ( E. coli ) is one of the most common pathogens causing clinical mastitis in cattle, but no vaccine is available to prevent this disease in China. Therefore, development of an E. coli vaccine against bovine clinical mastitis is urgently needed. The candidate vaccine (Ch-O111-1) and challenge (LZ06) strains were screened from milk samples of cows with clinical mastitis. To extend the cross-protection of the Ch-O111-1 strain, we deleted the galE gene fragment of the Ch-O111-1 strain through homologous recombination between the Ch-O111-1 strain and pCVD442/ΔgalE plasmid, which was identified through conventional methods, including PCR, SDS-PAGE and sequencing. The Ch-O111-1/ΔgalE (Z9) strain was characterized by extensive cross-reactivity and attenuated virulence. We prepared inactivated Z9 vaccines with different adjuvants. Immunization of inactivated Z9 antigen induced adjuvant-, dosage- and inoculation time-dependent antibody titers in cows and mice. Furthermore, immunization with SP01-adjuvanted inactivated Z9 vaccine protected cows against severe clinical mastitis caused by LZ06 and protected mice against death due to LZ06. An SP01-adjuvanted inactivated Z9 vaccine was successfully developed and found to protect cows against severe mastitis caused by Escherichia coli
Purified Immunoglobulin F(ab′) 2 Protects Mice and Rhesus Monkeys against Lethal Ricin Intoxication
Ricin is a highly toxic ribosome-inactivating lectin derived from castor beans. To date, no antidote is available to treat ricin-poisoned patients, and the development of a safe and effective antidote is urgently needed. First, ricin was prepared and used to construct a mouse model and a rhesus monkey model of ricin intoxication. Second, pepsin-digested F(ab′) 2 fragments of serum IgG from horses injected with Freund’s-adjuvanted purified ricin were prepared. Third, the protective efficacy was evaluated in mouse and rhesus monkey models of lethal ricin intoxication. The purity quotient of the prepared ricin and F(ab′) 2 fragments exceeded 90% and 85% in the mouse and monkey models, respectively. The LD 50 of ricin in mice and rhesus monkeys was 2.7 and 9 μg/kg, respectively. A quantity of 6.25 and 1.85 mg/kg F(ab′) 2 was sufficient to treat lethal ricin intoxication in the mice and rhesus monkeys, respectively. Finally, the effect of this therapeutic antibody on peripheral blood immune cells was examined by analysis of peripheral blood immune cells through single cell sequencing. The underlying mechanism was found to involve restraining neutrophil activation, proliferation, and differentiation. Purified F(ab′) 2 fragments administered with needle-free devices fully protect mice and rhesus monkeys against lethal doses of ricin intoxication
Preparation of Equine Immunoglobulin F(ab′) 2 against Smallpox and Evaluation of its Immunoprotective Effect
Smallpox, a severe infectious disease caused by the smallpox virus, causes a death rate as high as 30% within 15-20 days after infection. Therefore, development of anti-Smallpox product as a strategic reserve is urgently needed. We prepared and tested pepsin-digested F(ab′) 2 fragments of serum IgG from horses. Transmission electron microscopy indicated that the purified virus showed morphology consistent with VVTT. The titer was above 1.0 × 10 7 PFU/mL. The purity of the antigen exceeded 90%, according to HPLC. After purification and cleavage, the yield of the purified product F(ab′) 2 was approximately 1.3%, its purity exceeded 90%, and the neutralizing antibody titer exceeded 1:3200. F(ab′) 2 fragments had good preventive and therapeutic effects in mice at antibody doses of 5.2 mg/mL and 2.6 mg/mL. The viral loads of the drug-treated mice were suppressed to varying degrees, and the higher dose groups (5.2 and 2.6 mg/mL) showed a 2-3 fold lower viral load than that in the control group. A process for producing equine immunoglobulin F(ab′) 2 against VVTT was established. The prepared horse anti-smallpox immunoglobulin product had good neutralizing antibody effects on VVTT. The highly purified preparation may serve as a potential candidate for smallpox treatment
Design and Implementation of a TD_SCDMA Video Monitoring System Based on Android
AbstractThis paper introduces a design of a video monitoring system based on TD_SCDMA. The system is mainly composed of a video data acquisition and processing unit circuitry, a wireless module hardware circuitry and a network subsystem. The hardware design of the system is based on high performance chip 88AP310. The software design of the system is based on Android OS
- …
