181 research outputs found

    Decomposition Ascribed Synergistic Learning for Unified Image Restoration

    Full text link
    Learning to restore multiple image degradations within a single model is quite beneficial for real-world applications. Nevertheless, existing works typically concentrate on regarding each degradation independently, while their relationship has been less exploited to ensure the synergistic learning. To this end, we revisit the diverse degradations through the lens of singular value decomposition, with the observation that the decomposed singular vectors and singular values naturally undertake the different types of degradation information, dividing various restoration tasks into two groups,\ie, singular vector dominated and singular value dominated. The above analysis renders a more unified perspective to ascribe the diverse degradations, compared to previous task-level independent learning. The dedicated optimization of degraded singular vectors and singular values inherently utilizes the potential relationship among diverse restoration tasks, attributing to the Decomposition Ascribed Synergistic Learning (DASL). Specifically, DASL comprises two effective operators, namely, Singular VEctor Operator (SVEO) and Singular VAlue Operator (SVAO), to favor the decomposed optimization, which can be lightly integrated into existing convolutional image restoration backbone. Moreover, the congruous decomposition loss has been devised for auxiliary. Extensive experiments on blended five image restoration tasks demonstrate the effectiveness of our method, including image deraining, image dehazing, image denoising, image deblurring, and low-light image enhancement.Comment: 13 page

    Unlocking Masked Autoencoders as Loss Function for Image and Video Restoration

    Full text link
    Image and video restoration has achieved a remarkable leap with the advent of deep learning. The success of deep learning paradigm lies in three key components: data, model, and loss. Currently, many efforts have been devoted to the first two while seldom study focuses on loss function. With the question ``are the de facto optimization functions e.g., L1L_1, L2L_2, and perceptual losses optimal?'', we explore the potential of loss and raise our belief ``learned loss function empowers the learning capability of neural networks for image and video restoration''. Concretely, we stand on the shoulders of the masked Autoencoders (MAE) and formulate it as a `learned loss function', owing to the fact the pre-trained MAE innately inherits the prior of image reasoning. We investigate the efficacy of our belief from three perspectives: 1) from task-customized MAE to native MAE, 2) from image task to video task, and 3) from transformer structure to convolution neural network structure. Extensive experiments across multiple image and video tasks, including image denoising, image super-resolution, image enhancement, guided image super-resolution, video denoising, and video enhancement, demonstrate the consistent performance improvements introduced by the learned loss function. Besides, the learned loss function is preferable as it can be directly plugged into existing networks during training without involving computations in the inference stage. Code will be publicly available

    Iterative Prompt Learning for Unsupervised Backlit Image Enhancement

    Full text link
    We propose a novel unsupervised backlit image enhancement method, abbreviated as CLIP-LIT, by exploring the potential of Contrastive Language-Image Pre-Training (CLIP) for pixel-level image enhancement. We show that the open-world CLIP prior not only aids in distinguishing between backlit and well-lit images, but also in perceiving heterogeneous regions with different luminance, facilitating the optimization of the enhancement network. Unlike high-level and image manipulation tasks, directly applying CLIP to enhancement tasks is non-trivial, owing to the difficulty in finding accurate prompts. To solve this issue, we devise a prompt learning framework that first learns an initial prompt pair by constraining the text-image similarity between the prompt (negative/positive sample) and the corresponding image (backlit image/well-lit image) in the CLIP latent space. Then, we train the enhancement network based on the text-image similarity between the enhanced result and the initial prompt pair. To further improve the accuracy of the initial prompt pair, we iteratively fine-tune the prompt learning framework to reduce the distribution gaps between the backlit images, enhanced results, and well-lit images via rank learning, boosting the enhancement performance. Our method alternates between updating the prompt learning framework and enhancement network until visually pleasing results are achieved. Extensive experiments demonstrate that our method outperforms state-of-the-art methods in terms of visual quality and generalization ability, without requiring any paired data.Comment: Accepted to ICCV 2023 as Oral. Project page: https://zhexinliang.github.io/CLIP_LIT_page

    Adaptive Window Pruning for Efficient Local Motion Deblurring

    Full text link
    Local motion blur commonly occurs in real-world photography due to the mixing between moving objects and stationary backgrounds during exposure. Existing image deblurring methods predominantly focus on global deblurring, inadvertently affecting the sharpness of backgrounds in locally blurred images and wasting unnecessary computation on sharp pixels, especially for high-resolution images. This paper aims to adaptively and efficiently restore high-resolution locally blurred images. We propose a local motion deblurring vision Transformer (LMD-ViT) built on adaptive window pruning Transformer blocks (AdaWPT). To focus deblurring on local regions and reduce computation, AdaWPT prunes unnecessary windows, only allowing the active windows to be involved in the deblurring processes. The pruning operation relies on the blurriness confidence predicted by a confidence predictor that is trained end-to-end using a reconstruction loss with Gumbel-Softmax re-parameterization and a pruning loss guided by annotated blur masks. Our method removes local motion blur effectively without distorting sharp regions, demonstrated by its exceptional perceptual and quantitative improvements compared to state-of-the-art methods. In addition, our approach substantially reduces FLOPs by 66% and achieves more than a twofold increase in inference speed compared to Transformer-based deblurring methods. We will make our code and annotated blur masks publicly available.Comment: 17 page
    • …
    corecore