107 research outputs found

    Deep Joint Source-Channel Coding for Wireless Image Transmission with Entropy-Aware Adaptive Rate Control

    Full text link
    Adaptive rate control for deep joint source and channel coding (JSCC) is considered as an effective approach to transmit sufficient information in scenarios with limited communication resources. We propose a deep JSCC scheme for wireless image transmission with entropy-aware adaptive rate control, using a single deep neural network to support multiple rates and automatically adjust the rate based on the feature maps of the input image and their entropy, as well as the channel conditions. In particular, we maximize the entropy of the feature maps to increase the average information carried by each transmitted symbol during the training. We further decide which feature maps should be activated based on their entropy, which improves the efficiency of the transmitted symbols. We also propose a pruning module to remove less important pixels in the activated feature maps in order to further improve transmission efficiency. The experimental results demonstrate that our proposed scheme learns an effective rate control strategy that reduces the required channel bandwidth while preserving the quality of the reconstructed images

    Mean Field Game-based Waveform Precoding Design for Mobile Crowd Integrated Sensing, Communication, and Computation Systems

    Full text link
    Data collection and processing timely is crucial for mobile crowd integrated sensing, communication, and computation~(ISCC) systems with various applications such as smart home and connected cars, which requires numerous integrated sensing and communication~(ISAC) devices to sense the targets and offload the data to the base station~(BS) for further processing. However, as the number of ISAC devices growing, there exists intensive interactions among ISAC devices in the processes of data collection and processing since they share the common network resources. In this paper, we consider the environment sensing problem in the large-scale mobile crowd ISCC systems and propose an efficient waveform precoding design algorithm based on the mean field game~(MFG). Specifically, to handle the complex interactions among large-scale ISAC devices, we first utilize the MFG method to transform the influence from other ISAC devices into the mean field term and derive the Fokker-Planck-Kolmogorov equation, which model the evolution of the system state. Then, we derive the cost function based on the mean field term and reformulate the waveform precoding design problem. Next, we utilize the G-prox primal-dual hybrid gradient algorithm to solve the reformulated problem and analyze the computational complexity of the proposed algorithm. Finally, simulation results demonstrate that the proposed algorithm can solve the interactions among large-scale ISAC devices effectively in the ISCC process. In addition, compared with other baselines, the proposed waveform precoding design algorithm has advantages in improving communication performance and reducing cost function.Comment: 13 pages,9 figure

    Online Resource Allocation for Semantic-Aware Edge Computing Systems

    Full text link
    In this paper, we propose a semantic-aware joint communication and computation resource allocation framework for MEC systems. In the considered system, random tasks arrive at each terminal device (TD), which needs to be computed locally or offloaded to the MEC server. To further release the transmission burden, each TD sends the small-size extracted semantic information of tasks to the server instead of the original large-size raw data. An optimization problem of joint semanticaware division factor, communication and computation resource management is formulated. The problem aims to minimize the energy consumption of the whole system, while satisfying longterm delay and processing rate constraints. To solve this problem, an online low-complexity algorithm is proposed. In particular, Lyapunov optimization is utilized to decompose the original coupled long-term problem into a series of decoupled deterministic problems without requiring the realizations of future task arrivals and channel gains. Then, the block coordinate descent method and successive convex approximation algorithm are adopted to solve the current time slot deterministic problem by observing the current system states. Moreover, the closed-form optimal solution of each optimization variable is provided. Simulation results show that the proposed algorithm yields up to 41.8% energy reduction compared to its counterpart without semantic-aware allocation

    Robust mmWave Beamforming by Self-Supervised Hybrid Deep Learning

    Full text link
    Beamforming with large-scale antenna arrays has been widely used in recent years, which is acknowledged as an important part in 5G and incoming 6G. Thus, various techniques are leveraged to improve its performance, e.g., deep learning, advanced optimization algorithms, etc. Although its performance in many previous research scenarios with deep learning is quite attractive, usually it drops rapidly when the environment or dataset is changed. Therefore, designing effective beamforming network with strong robustness is an open issue for the intelligent wireless communications. In this paper, we propose a robust beamforming self-supervised network, and verify it in two kinds of different datasets with various scenarios. Simulation results show that the proposed self-supervised network with hybrid learning performs well in both classic DeepMIMO and new WAIR-D dataset with the strong robustness under the various environments. Also, we present the principle to explain the rationality of this kind of hybrid learning, which is instructive to apply with more kinds of datasets

    Seismic Vulnerability Evaluation of a Three-Span Continuous Beam Railway Bridge

    Get PDF
    In order to evaluate the seismic vulnerability of a railway bridge, a nonlinear finite element model of typical three-span continuous beam bridge on the Sichuan-Tibet railway in China was built. It further aimed at performing a probabilistic seismic demand analysis based on the seismic performance of the above-mentioned bridge. Firstly, the uncertainties of bridge parameters were analyzed while a set of finite element model samples were formulated with Latin hypercube sampling method. Secondly, under Wenchuan earthquake ground motions, an incremental dynamic method (IDA) analysis was performed, and the seismic peak responses of bridge components were recorded. Thirdly, the probabilistic seismic demand model for the bridge principal components under the prerequisite of two different kinds of bearing, with and without seismic isolation, was generated. Finally, comparison was drawn to further ascertain the effect of two different kinds of bearings on the fragility components. Based on the reliability theory, results were presented concerning the seismic fragility curves
    corecore