24 research outputs found

    Effects of plant diversity and big-sized trees on ecosystem function in a tropical montane evergreen broad-leaved forest

    Get PDF
    IntroductionScale dependencies play a vital role in defining the biodiversity-ecosystem functioning relationship in forest ecosystems, which varies based on the magnitude of multiple plant diversity attributes, soil properties, and aboveground biomass in forest ecosystems. However, the effects of plant diversity and big-sized trees on the relationship between plant diversity and aboveground biomass across different scales remain unclear in forest ecosystems.MethodsBased on a 30-ha tropical montane evergreen broad-leaved forest dynamics plot in Yunnan province, China, we comparatively analyzed the importance of scale-dependent effects of multiple plant diversity attributes, soil properties, neighborhood competition intensity and aboveground biomass of big-sized trees, as well as stand structural complexity on aboveground biomass of all woody individuals. The aim is therefore to identify the main predictors for sustaining aboveground biomass of all woody individuals, considering multiple biotic and abiotic factors jointly, as well as underlying mechanisms.ResultsOur results suggest that indicators such as species richness and phylogenetic diversity did not strongly contribute to aboveground biomass of all woody individuals with increasing spatial scales, while aboveground biomass of big-sized trees exhibited the greatest contribution to aboveground biomass of all woody individuals. Stand structural complexity, characterized by variances in woody plant diameter at breast height, also contributed more to aboveground biomass of all woody individuals indirectly via neighborhood competition intensity and aboveground biomass of big-sized trees. Contributions of functional dispersion and community-weighted mean of leaf phosphorus concentration to aboveground biomass of all woody individuals became stronger with increasing spatial scales. Neighborhood competition intensity exhibited a negative linear relationship with aboveground biomass of all woody individuals at the smallest scale, but it affected positively aboveground biomass of all woody individuals across spatial scales, likely due to indirect effects via aboveground biomass of big-sized trees.DiscussionBig-sized trees will likely become more important in biodiversity maintenance and ecosystem function management as deforestation and forest degradation

    RFI Suppression Based on Linear Prediction in Synthetic Aperture Radar Data

    No full text

    Onboard Digital Beamformer with Multi-Frequency and Multi-Group Time Delays for High-Resolution Wide-Swath SAR

    No full text
    Scan-on-receive (SCORE) digital beamforming (DBF) in elevation can significantly improve the signal-to-noise ratio (SNR) and suppress range ambiguities in spaceborne synthetic aperture radar (SAR). It has been identified as one of the important methods to obtain high-resolution wide-swath (HRWS) SAR images. However, with the improvement of geometric resolution and swath width, the residual pulse extension loss (PEL) due to the long pulse duration in the conventional spaceborne onboard DBF processor must be considered and reduced. In this paper, according to the imaging geometry of the spaceborne DBF SAR system, the reason for the large attenuation of the receiving gain at the edge of the wide swath is analyzed, and two improved onboard DBF methods to mitigate the receive gain loss are given and analyzed. Taking account of both the advantages and drawbacks of the two improved DBF methods presented, a novel onboard DBF processor with multi-frequency and multi-group time delays in HRWS SAR is proposed. Compared with the DBF processor only with multi-group time delays, the downlink data rate was clearly reduced, while focusing performance degradation due to phase and amplitude errors between different frequency bands could be mitigated compared with the DBF processor only with multi-frequency time delays. The simulation results of both point and distributed targets validate the proposed DBF processor

    A Review of Studies on Patient-reported Outcomes and Disease-specific Health-related Quality of Life Instruments for Irritable Bowel Syndrome

    Get PDF
    Scale assessment for irritable bowel syndrome (IBS) has been widely implemented in clinical practice, how to choose an appropriate assessment tool is very important. In view of this, we used literature research methodology to search patient-reported outcomes and disease-specific health-related quality of life instruments for IBS, summarized their main contents and psychometric properties, then put forward recommendations on the selection of the instruments. A total of 37 commonly used instruments for IBS were retrieved, which have proven to have good reliability, validity and responsiveness, and can be better applied in clinical practice. We suggest medical professionals and researchers choose an assessment instrument for IBS according to the purpose and content of their research

    Development and validation of a disease-specific quality of life measure QLICD-HY (V2.0) for patients with hypertension

    No full text
    Abstract The purpose of the present study is to develop and validate the hypertension scale of the Quality of Life Instruments (QoL) for Chronic Diseases system, QLICD-HY (V2.0). The QLICD-HY (V2.0) was developed via a programmed decision method with several focus groups, nominal discussions and pilot testing. The data was collected from 370 hypertensive inpatients and measured their QoL three times before and after treatment. Using correlation, factor analyses, as well as t-tests, the psychometric properties of the scale were assessed with regard to validity, reliability and responsiveness. Correlation and factor analysis supported good construct validity and criterion-related validity when using Short Form 36 as a criterion. Test–retest reliability coefficients for the overall scale score and all domains, with the exception of the psychological and social domain (0.77, 0.78), were greater than 0.80, with a range of 0.77–0.92. The internal consistency for all domains was higher than 0.70. With the exception of the psychological domain and social domain, the overall score and scores for the majority of aspects within each domain underwent statistically significant changes (t-tests) after the treatment. The QLICD-HY (V2.0) has good validity, reliability and responsiveness and can be used as a QoL measure for hypertensive patients

    Development and validation of the pulmonary tuberculosis scale of the system of Quality of Life Instruments for Chronic Diseases (QLICD-PT)

    No full text
    Abstract Background Generic assessments are less responsive to subtle changes due to specific diseases, making it challenging to fully understand the impact of pulmonary tuberculosis (TB) on patient’s quality of life (QOL). Methods We applied programmed decision procedures and theories on instrument development to develop the scale. Two hundred patients with pulmonary TB participated in measuring QOL three times before and after treatments. We assessed the validity, reliability, and responsiveness of QLICD-PT using correlation analysis, factor analysis, multi-trait scaling analysis, randomized block analyses of variance with Least Significant Difference post-hoc tests. Results We composed QLICD-PT with 3 domains (28 items) for general QOL and 1 pulmonary TB specific domain (12 items). Correlation and factor analysis confirmed good structure validity and criterion-related validity when using Chinese version of the Medical Outcomes Short-Form Health Survey (SF-36) as a criterion. The internal consistency of α values were higher than 0.70. The score changes after treatment were of statistical significance for the overall scale, physical domain and specific domain with effect size ranging from 0.32 to 0.72. No floor effects but small ceiling effects were observed at domain level. Conclusions As the first pulmonary TB-specific QOL scale developed by a module approach in Chinese, QLICD-PT has an acceptable degree of validity, reliability and responsiveness, and can be used to measure the life quality of PT patients specifically and sufficiently

    Azimuth Multichannel Reconstruction Based on Advanced Hyperbolic Range Equation

    No full text
    To acquire high-resolution wide-swath (HRWS) imaging capacity, the displaced phase center multichannel azimuth beam (DPCMAB) technology is usually adopted in spaceborne synthetic aperture radar (SAR), while multichannel reconstruction must be carried out before imaging process due to azimuth nonuniform sampling. Up to now, almost all azimuth multichannel reconstruction algorithms have been mainly based on conventional hyperbolic range equation (CHRE), but the accuracy of the CHRE model is usually not suitable for the HRWS mode, especially for high resolution and large squint observation cases. In this study, the azimuth multichannel signal model based on the advanced hyperbolic range equation (AHRE) is established and analyzed. The major difference between multichannel signal models based on CHRE and AHRE is the additional time-varying phase error between azimuth channels. The time-varying phase error is small and can be ignored in the monostatic DPCMAB SAR system, but it must be considered and compensated in the distributed DPCMAB SAR system. In addition to the time-varying phase error, additional Doppler spectrum shift and extended Doppler bandwidth should be considered in the squint case during azimuth multichannel reconstruction. The azimuth multichannel reconstruction algorithm based on AHRE is proposed in this paper. Before multichannel reconstruction and combination, time-varying phase errors between azimuth channels were first compensated, and the range-frequency-dependent de-skewing function was derived to remove the two-dimension (2D) spectrum tilt to avoid azimuth under-sampling. Then, azimuth multichannel data were reconstructed according to the azimuth multichannel impulse response based on AHRE. Finally, the range-frequency dependent re-skewing function was introduced to recover the tilted 2D spectrum. Simulation results on both point and distributed targets validated the proposed azimuth multichannel reconstruction approach

    Long‐term, amplified responses of soil organic carbon to nitrogen addition worldwide

    No full text
    Soil organic carbon (SOC) is the largest carbon sink in terrestrial ecosystems and plays a critical role in mitigating climate change. Increasing reactive nitrogen (N) in ecosystems caused by anthropogenic N input substantially affects SOC dynamics. However, uncertainties remain concerning the effects of N addition on SOC in both organic and mineral soil layers over time at the global scale. Here, we analyzed a large empirical data set spanning 60 years across 369 sites worldwide to explore the temporal dynamics of SOC to N addition. We found that N addition significantly increased SOC across the globe by 4.2% (2.7–5.8%). SOC increases were amplified from short- to long-term N addition durations in both organic and mineral soil layers. The positive effects of N addition on SOC were independent of ecosystem types, mean annual temperature and precipitation. Our findings suggest that SOC increases largely resulted from the enhanced plant C input to soils coupled with reduced C loss from decomposition and amplification was associated with reduced microbial biomass and respiration under long-term N addition. Our study suggests that N addition will enhance SOC sequestration over time and contribute to future climate change mitigation.This is the peer reviewed version of the following article: Xu, Chonghua, Xia Xu, Chenghui Ju, Han YH Chen, Brian J. Wilsey, Yiqi Luo, and Wei Fan. "Long‐term, amplified responses of soil organic carbon to nitrogen addition worldwide." Global Change Biology (2020), which has been published in final form at doi:10.1111/gcb.15489. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.</p

    Pretreatment with Astragaloside IV protects human umbilical vein endothelial cells from hydrogen peroxide induced oxidative stress and cell dysfunction via inhibiting eNOS uncoupling and NADPH oxidase- ROS-NF-κB pathway

    No full text
    Endothelial cell injury caused by reactive oxygen species (ROS) plays a critical role in the pathogenesis of cardiovascular disorders. Astragaloside IV (AsIV) possesses potent antioxidant properties against oxidative stress through undefined mechanism(s). We sought to investigate whether AsIV protects human umbilical vein endothelial cells (HUVECs) from hydrogen peroxide (H2O2) induced oxidative stress focusing on eNOS uncoupling and the NADPH oxidase- ROS-NF-κB pathway. Compared with HUVECs incubated with H2O2 alone, pretreatment with AsIV significantly increased the viability of HUVECs, which was accompanied with apparent increase in nitric oxide (NO) production and decrease in intracellular superoxide anion production. Furthermore, pretreatment with AsIV increased endothelial nitric oxide synthase (eNOS) dimer/monomer ratio and its critical cofactor tetrahydrobiopterin (BH4) content, decreased Nox4 protein expression, the most abundant Nox isoform in HUVECs, inhibited translocation of NF-κB p65 subunit into nuclear fraction while enhanced the protein expression of IκB-α, the inhibitor of NF-κB p65, reduced the levels of IL-1β, IL-6 and TNF-α in HUVECs medium, and decreased iNOS protein expression,. These results suggest that AsIV may protect HUVECs from H2O2 induced oxidative stress via inhibiting NADPH oxidase-ROS-NF-κB pathway and eNOS uncoupling.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore