2,377 research outputs found
Cracking pressure control of parylene checkvalve using slanted tensile tethers
MEMS check valves with fixed cracking pressures are important in micro-fluidic applications where the pressure, flow directions and flow rates all need to be carefully controlled. This work presents a new surface-micromachined parylene check valve that uses residual thermal stress in the parylene to control its cracking pressure. The new check valve uses slanted tethers to allow the parylene tensile stress to apply a net downward force on the valving seat against the orifice. The angle of the slanted tethers is made using a gray-scale mask to create a sloped sacrificial photoresist with the following tether parylene deposition. The resulted check valves have both the cracking pressures and flow profiles agreeable well with our theoretical analysis
Dynamic simulation of a peristaltic micropump considering coupled fluid flow and structural motion
This paper presents lumped-parameter simulation of dynamic characteristics of peristaltic micropumps. The pump consists of three pumping cells connected in series, each of which is equipped with a compliant diaphragm that is electrostatically actuated in a peristaltic sequence to mobilize the fluid. Diaphragm motion in each pumping cell is first represented by an effective spring subjected to hydrodynamic and electrostatic forces. These cell representations are then used to construct a system-level model for the entire pump, which accounts for both cell- and pump-level interactions of fluid flow and diaphragm vibration. As the model is based on first principles, it can be evaluated directly from the device's geometry, material properties and operating parameters without using any experimentally identified parameters. Applied to an existing pump, the model correctly predicts trends observed in experiments. The model is then used to perform a systematic analysis of the impact of geometry, materials and pump loading on device performance, demonstrating its utility as an efficient tool for peristaltic micropump design
Parylene stiction
This paper presents a preliminary study into stiction between parylene C and substrate surfaces for biocompatible check-valve applications. During fabrication, parylene C is used as the structural material for the check-valve. The substrate surfaces studied include Au, Al, Si, parylene C, XeF_2 treated Si, and silicon dioxide. Stiction between different surfaces is created after sacrificial photoresist etching. Then, the stiction is measured using blister tests, and stiction mechanisms for different materials are investigated. The devices are released with different recipes to examine their effects. Finally, the results of the study reveal methods to control the cracking pressure of parylene check-valves
Noncontact Three-Dimensional Diffuse Optical Imaging of Deep Tissue Blood Flow Distribution
The present invention provides for three-dimensional reflectance diffuse optical imaging of deep tissue blood flow distribution that removes the need for probe-tissue contact, thereby allowing for such technology to be applied to sensitive, vulnerable, damaged, or reconstructive tissue. The systems utilize noncontact application and detection of near-infrared light through optical lens and detection through a linear array or two-dimensional array of avalanche photodiodes or a two-dimensional array of detectors provided by charge-coupled-device (CCD). Both further feature a finite-element-method (FEM) based facilitation to provide for three-dimensional flow image reconstruction in deep tissues with arbitrary geometries
Surface micromachined electrostatically actuated micro peristaltic pump
An electrostatically actuated micro peristaltic pump is reported. The micro pump is entirely surface micromachined using a multilayer parylene technology. Taking advantage of the multilayer technology, the micro pump design enables the pumped fluid to be isolated from the electric field. Electrostatic actuation of the parylene membrane using both DC and AC voltages was demonstrated and applied to fluid pumping based on a 3-phase peristaltic sequence. A maximum flow rate of 1.7 nL min^–1 and an estimated pumping pressure of 1.6 kPa were achieved at 20 Hz phase frequency. A dynamic analysis was also performed with a lumped-parameter model for the peristaltic pump. The analysis results allow a quantitative understanding of the peristaltic pumping operation, and correctly predict the trends exhibited by the experimental data. The small footprint of the micro pump is well suited for large-scale integration of microfluidics. Moreover, because the same platform technology has also been used to fabricate other devices (e.g. valves, electrospray ionization nozzles, filters and flow sensors), the integration of these different devices can potentially lead to versatile and functional micro total analysis systems (µTAS)
A parametrized three-dimensional model for MEMS thermal shear-stress sensors
This paper presents an accurate and efficient model of MEMS thermal shear-stress sensors featuring a thin-film hotwire on a vacuum-isolated dielectric diaphragm. We consider three-dimensional (3-D) heat transfer in sensors operating in constant-temperature mode, and describe sensor response with a functional relationship between dimensionless forms of hotwire power and shear stress. This relationship is parametrized by the diaphragm aspect ratio and two additional dimensionless parameters that represent heat conduction in the hotwire and diaphragm. Closed-form correlations are obtained to represent this relationship, yielding a MEMS sensor model that is highly efficient while retaining the accuracy of three-dimensional heat transfer analysis. The model is compared with experimental data, and the agreement in the total and net hotwire power, the latter being a small second-order quantity induced by the applied shear stress, is respectively within 0.5% and 11% when uncertainties in sensor geometry and material properties are taken into account. The model is then used to elucidate thermal boundary layer characteristics for MEMS sensors, and in particular, quantitatively show that the relatively thick thermal boundary layer renders classical shear-stress sensor theory invalid for MEMS sensors operating in air. The model is also used to systematically study the effects of geometry and material properties on MEMS sensor behavior, yielding insights useful as practical design guidelines
SpVOS: Efficient Video Object Segmentation with Triple Sparse Convolution
Semi-supervised video object segmentation (Semi-VOS), which requires only
annotating the first frame of a video to segment future frames, has received
increased attention recently. Among existing pipelines, the
memory-matching-based one is becoming the main research stream, as it can fully
utilize the temporal sequence information to obtain high-quality segmentation
results. Even though this type of method has achieved promising performance,
the overall framework still suffers from heavy computation overhead, mainly
caused by the per-frame dense convolution operations between high-resolution
feature maps and each kernel filter. Therefore, we propose a sparse baseline of
VOS named SpVOS in this work, which develops a novel triple sparse convolution
to reduce the computation costs of the overall VOS framework. The designed
triple gate, taking full consideration of both spatial and temporal redundancy
between adjacent video frames, adaptively makes a triple decision to decide how
to apply the sparse convolution on each pixel to control the computation
overhead of each layer, while maintaining sufficient discrimination capability
to distinguish similar objects and avoid error accumulation. A mixed sparse
training strategy, coupled with a designed objective considering the sparsity
constraint, is also developed to balance the VOS segmentation performance and
computation costs. Experiments are conducted on two mainstream VOS datasets,
including DAVIS and Youtube-VOS. Results show that, the proposed SpVOS achieves
superior performance over other state-of-the-art sparse methods, and even
maintains comparable performance, e.g., an 83.04% (79.29%) overall score on the
DAVIS-2017 (Youtube-VOS) validation set, with the typical non-sparse VOS
baseline (82.88% for DAVIS-2017 and 80.36% for Youtube-VOS) while saving up to
42% FLOPs, showing its application potential for resource-constrained
scenarios.Comment: 15 pages, 6 figure
Probabilistic Settlement Analysis of Granular Soft Soil Foundation in Southern China Considering Spatial Variability
In this chapter, the method of combining the theory of random field and numerical analysis was used to systematically analyze the settlement probability of the soft soil foundation in the south of China, considering the effect of spatial variability of soil parameters. Based on the midpoint discretization and Cholesky decomposition, the cross-correlated non-Gaussian random field of cohesion and internal friction angle was constructed, which had considered the cross-correlation, and a single parameter random field of modulus was also constructed. The Monte-Carlo stochastic finite element program for two-dimensional foundation probabilistic settlement was developed in APDL language. The influence of spatial variability of soil parameters on probability foundation settlement was studied. The results indicate that the foundation settlement increases with the increase of coefficient variation and correlation distance. Modulus is the most important parameter for foundation settlement. The settlement of foundation is more sensitive to the correlation distance in vertical direction. Based on exponential square autocorrelation function, the continuity of random fields is obviously better, and the foundation settlement is larger. On the contrary, the fluctuation of random fields is larger, and the foundation settlement is smaller with single exponential autocorrelation function
- …