16 research outputs found
The effect of mild cold exposure on UCP3 mRNA expression and UCP3 protein content in humans
Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht, Maastricht University, The Netherlands. [email protected] OBJECTIVE: In rodents, adaptive thermogenesis in response to cold exposure and high-fat feeding is accomplished by the activation of the brown adipose tissue specific mitochondrial uncoupling protein, UCP1. The recently discovered human uncoupling protein 3 is a possible candidate for adaptive thermogenesis in humans. In the present study we examined the effect of mild cold exposure on the mRNA and protein expression of UCP3. SUBJECTS: Ten healthy male volunteers (age 24.4 +/- 1.6 y; height 1.83 +/- 0.02 m; weight 77.3 +/- 3.0 kg; percentage body fat 19 +/- 2). DESIGN: Subjects stayed twice in the respiration chamber for 60 h (20.00-8.00 h); once at 22 degrees C (72 degrees F), and once at 16 degrees C (61 degrees F). After leaving the respiration chamber, muscle biopsies were taken and RT-competitive-PCR and Western blotting was used to measure UCP3 mRNA and protein expression respectively. RESULTS: Twenty-four-hour energy expenditure was significantly increased at 16 degrees C compared to 22 degrees C (P<0.05). At 16 degrees C, UCP3T (4.6 +/- 1.0 vs 7.7 +/- 1.5 amol/microg RNA, P=0.07), UCP3L (2.0 +/- 0.5 vs 3.5 +/- 0.9 amol/microg RNA, P=0.1) and UCP3S (2.6 +/- 0.6 vs 4.2 +/- 0.7 amol/microg RNA, P=0.07) mRNA expression tended to be lower compared with at 22 degrees C, whereas UCP3 protein content was, on average, not different. However, the individual differences in UCP3 protein content (16-22 degrees C) correlated positively with the differences in 24 h energy expenditure (r=0.86, P<0.05). CONCLUSION: The present study suggests that UCP3 protein content is related to energy metabolism in humans and might help in the metabolic adaptation to cold exposure. However, the down-regulation of UCP3 mRNA with mild cold exposure suggests that prolonged cold exposure will lead to lower UCP3 protein content. What the function of such down-regulation of UCP3 could be is presently unknown
Fiber type dependent upregulation of human skeletal muscle UCP2 and UCP3 mRNA expression by high-fat diet
Int J Obes Relat Metab Disord 2001 Apr;25(4):449-56 Related Articles, Books, LinkOut Fiber type dependent upregulation of human skeletal muscle UCP2 and UCP3 mRNA expression by high-fat diet. Schrauwen P, Hoppeler H, Billeter R, Bakker AH, Pendergast DR. Department of Human Biology, Maastricht University, Maastricht, The Netherlands. [email protected] OBJECTIVE: To test the hypothesis that consumption of a high-fat diet leads to an increase in UCP mRNA expression in human skeletal muscle. In a group of endurance athletes, with a range in fiber type distribution, we hypothesized that the effect of the high-fat diet on UCP2 and UCP3 mRNA expression is more pronounced in muscle fibers which are known to have a high capacity to shift from carbohydrate to fat oxidation (type IIA fibers). DESIGN: Ten healthy trained athletes (five males, five females) consumed a low-fat diet (17+/-0.9 en% of fat) and high-fat diet (41.4+/-1.4 en% fat) for 4 weeks, separated by a 4 week wash-out period. Muscle biopsies were collected at the end of both dietary periods. MEASUREMENTS: Using RT-PCR, levels of UCP2 and UCP3 mRNA expression were measured and the percentage of type I, IIA and IIB fibers were determined using the myofibrillar ATPase method in all subjects. RESULTS: UCP3L mRNA expression tended to be higher on the high-fat diet, an effect which reached significance when only males were considered (P=0.037). Furthermore, diet-induced change in mRNA expression of UCP3T (r: 0.66, P=0.037), UCP3L (r: 0.61, P=0.06) and UCP2 (r: 0.70, P=0.025), but not UCP3S, correlated significantly with percentage dietary fat on the high-fat diet. Plasma FFA levels were not different during the two diets. Finally, the percentage of type IIA fibers was positively correlated with the diet-induced change in mRNA expression for UCP2 (r: 0.7, P=0.03), UCP3L (r: 0.73, P=0.016) and UCP3T (r: 0.68, P=0.03) but not with UCP3S (r: 0.06, NS). CONCLUSION: UCP2 and UCP3 mRNAs are upregulated by a high-fat diet. This upregulation is more pronounced in humans with high proportions of type IIA fibers, suggesting a role for UCPs in lipid utilization