1,347 research outputs found
Evidence of Confinement of Solar-energetic Particles to Interplanetary Magnetic Field Lines
We present new observations of solar-energetic particles (SEPs) associated with impulsive solar flares that show
evidence for their confinement to interplanetary magnetic field lines. Some SEP events exhibit intermittent intensity
dropouts becausemagnetic field lines filledwith and empty of particle flux mix together. The edges of these dropouts
are observed to be very sharp, suggesting that particles cannot easily move from a filled to an empty field line in
the time available during their transport from the Sun. In this paper, we perform high time-resolution observations
of intensity fall-off at the edges of observed SEP dropouts in order to look for signatures of particle motion off
field lines. However, the statistical study is dominated by one particularly intense event. The inferred length scale
of the intensity decay is comparable to the gyroradii of the particles, suggesting that particles only rarely scatter off magnetic field lines during interplanetary transport
Effects of interplanetary transport on derived energetic particle source strengths
We study the transport of solar energetic particles (SEPs) in the inner heliosphere in order to relate observations made by an observer at 1 AU to the number and total energy content of accelerated particles at the source, assumed to be near the Sun. We use a numerical simulation that integrates the trajectories of a large number of individual particles moving in the interplanetary magnetic field. We model pitch angle scattering and adiabatic cooling of energetic ions with energies from 50 keV nucleon^(−1) to 100 MeV nucleon^(−1). Among other things, we determine the number of times that particles of a given energy cross 1 AU and the average energy loss that they suffer because of adiabatic deceleration in the solar wind. We use a number of different forms of the interplanetary spatial diffusion coefficient and a wide range of scattering mean-free paths and consider a number of different ion species in order to generate a wide range of simulation results that can be applied to individual SEP events. We apply our simulation results to observations made at 1 AU of the 20 February 2002 solar energetic particle event, finding the original energy content of several species. We find that estimates of the source energy based on SEP measurements at 1 AU are relatively insensitive to the mean-free path and scattering scheme if adiabatic cooling and multiple crossings are taken into account
Modelling photochemistry in alpine valleys
Peer reviewe
\u3csup\u3e12\u3c/sup\u3eC/\u3csup\u3e13\u3c/sup\u3eC Ratio in Planetary Nebulae from the \u3cem\u3eIUE\u3c/em\u3e Archives
We investigated the abundance ratio of 12C/13C in planetary nebulae by examining emission lines arising from C III 2s2p3Po2,1,0 → 2s21S0. Spectra were retrieved from the International Ultraviolet Explorer archives, and multiple spectra of the same object were co-added to achieve improved signal-to-noise ratio. The 13C hyperfine structure line at 1909.6 Å was detected in NGC 2440. The 12C/13C ratio was found to be ~4.4+/-1.2. In all other objects, we provide an upper limit for the flux of the 1910 Å line. For 23 of these sources, a lower limit for the 12C/13C ratio was established. The impact on our current understanding of stellar evolution is discussed. The resulting high-signal-to-noise ratio C III spectrum helps constrain the atomic physics of the line formation process. Some objects have the measured 1907/1909 Å flux ratio outside the low-electron density theoretical limit for 12C. A mixture of 13C with 12C helps to close the gap somewhat. Nevertheless, some observed 1907/1909 Å flux ratios still appear too high to conform to the currently predicted limits. It is shown that this limit, as well as the 1910/1909 Å flux ratio, are predominantly influenced by using the standard partitioning among the collision strengths for the multiplet 1S0-3PoJ according to the statistical weights. A detailed calculation for the fine-structure collision strengths between these individual levels would be valuable
Combination of carbon nanotubes and two-photon absorbers for broadband optical limiting
New systems are required for optical limiting against broadband laser pulses.
We demonstrate that the association of non-linear scattering from single-wall
carbon nanotubes (SWNT) and multiphoton absorption (MPA) from organic
chromophores is a promising approach to extend performances of optical limiters
over broad spectral and temporal ranges. Such composites display high linear
transmission and good neutral colorimetry and are particularly efficient in the
nanosecond regime due to cumulative effects.Comment: 5 avril 200
C/C ratio in planetary nebulae from the IUE archives
We investigated the abundance ratio of C/C in planetary nebulae
by examining emission lines arising from \ion{C}{3} 2s2p ^3P_{2,1,0} \to 2s^2
^1S_0. Spectra were retrieved from the International Ultraviolet Explorer
archives, and multiple spectra of the same object were coadded to achieve
improved signal-to-noise. The C hyperfine structure line at 1909.6 \AA
was detected in NGC 2440. The C/C ratio was found to be
1.2. In all other objects, we provide an upper limit for the flux
of the 1910 \AA line. For 23 of these sources, a lower limit for the
C/C ratio was established. The impact on our current
understanding of stellar evolution is discussed.
The resulting high signal-to-noise \ion{C}{3} spectrum helps constrain the
atomic physics of the line formation process. Some objects have the measured
1907/1909 flux ratio outside the low-electron density theoretical limit for
C. A mixture of C with C helps to close the gap somewhat.
Nevertheless, some observed 1907/1909 flux ratios still appear too high to
conform to the presently predicted limits. It is shown that this limit, as well
as the 1910/1909 flux ratio, are predominantly influenced by using the standard
partitioning among the collision strengths for the multiplet --
according to the statistical weights. A detailed calculation for the fine
structure collision strengths between these individual levels would be
valuable.Comment: ApJ accepted: 19 pages, 3 Figures, 2 Table
Recommended from our members
Do the legs of magnetic clouds contain twisted flux-rope magnetic fields?
Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections (ICMEs) characterised primarily by a smooth rotation in the magnetic field direction indicative of the presence of a magnetic flux rope. Energetic particle signatures suggest MC flux ropes remain magnetically connected to the Sun at both ends, leading to widely used model of global MC structure as an extended flux rope, with a loop-like axis stretching out from the Sun into the heliosphere and back to the Sun. The time of flight of energetic particles, however, suggests shorter magnetic field line lengths than such a continuous twisted flux rope would produce. In this study, two simple models are compared with observed flux rope axis orientations of 196 MCs to show that the flux rope structure is confined to the MC leading edge. The magnetic cloud “legs,” which magnetically connect the flux rope to the Sun, are not recognisable as MCs and thus are unlikely to contain twisted flux rope fields. Spacecraft encounters with these non-flux rope legs may provide an explanation for the frequent observation of non-magnetic cloud ICMEs
Solar interacting protons versus interplanetary protons in the core plus halo model of diffusive shock acceleration and stochastic re-acceleration
With the first observations of solar γ-rays from the decay of pions, the relationship of protons producing ground level enhancements (GLEs) on the Earth to those of similar energies producing the γ-rays on the Sun has been debated. These two populations may be either independent and simply coincident in large flares, or they may be, in fact, the same population stemming from a single accelerating agent and jointly distributed at the Sun and also in space. Assuming the latter, we model a scenario in which particles are accelerated near the Sun in a shock wave with a fraction transported back to the solar surface to radiate, while the remainder is detected at Earth in the form of a GLE. Interplanetary ions versus ions interacting at the Sun are studied for a spherical shock wave propagating in a radial magnetic field through a highly turbulent radial ray (the acceleration core) and surrounding weakly turbulent sector in which the accelerated particles can propagate toward or away from the Sun. The model presented here accounts for both the first-order Fermi acceleration at the shock front and the second-order, stochastic re-acceleration by the turbulence enhanced behind the shock. We find that the re-acceleration is important in generating the γ-radiation and we also find that up to 10% of the particle population can find its way to the Sun as compared to particles escaping to the interplanetary space
INFLUENCE OF THE INTERACTIONS OF LOCAL DYNAMICAL PROCESSES WITH LARGE-SCALE FLOW ON AIR QUALITY IN THE GRENOBLE AREA
The vertical distribution of ozone over the Grenoble area is investigated for two summer smog episodes in 1999 and 2003. The effects of the interactions of local dynamical processes with large-scale circulations were estimated using numerical modelling. The results suggest that a terrain-induced shear layer above the boundary layer confines pollutants within the valley. Vertical exchanges through this shear layer have a considerable influence on the near-surface ozone concentration from day to day
- …