42,428 research outputs found
Spatial Performance Analysis and Design Principles for Wireless Peer Discovery
In wireless peer-to-peer networks that serve various proximity-based
applications, peer discovery is the key to identifying other peers with which a
peer can communicate and an understanding of its performance is fundamental to
the design of an efficient discovery operation. This paper analyzes the
performance of wireless peer discovery through comprehensively considering the
wireless channel, spatial distribution of peers, and discovery operation
parameters. The average numbers of successfully discovered peers are expressed
in closed forms for two widely used channel models, i.e., the interference
limited Nakagami-m fading model and the Rayleigh fading model with nonzero
noise, when peers are spatially distributed according to a homogeneous Poisson
point process. These insightful expressions lead to the design principles for
the key operation parameters including the transmission probability, required
amount of wireless resources, level of modulation and coding scheme (MCS), and
transmit power. Furthermore, the impact of shadowing on the spatial performance
and suggested design principles is evaluated using mathematical analysis and
simulations.Comment: 12 pages (double columns), 10 figures, 1 table, to appear in the IEEE
Transactions on Wireless Communication
Decentralized Multi-Subgroup Formation Control With Connectivity Preservation and Collision Avoidance
This paper proposes a formation control algorithm to create separated multiple formations for an undirected networked multi-agent system while preserving the network connectivity and avoiding collision among agents. Through the modified multi-consensus technique, the proposed algorithm can simultaneously divide a group of multiple agents into any arbitrary number of desired formations in a decentralized manner. Furthermore, the agents assigned to each formation group can be easily reallocated to other formation groups without network topological constraints as long as the entire network is initially connected; an operator can freely partition agents even if there is no spanning tree within each subgroup. Besides, the system can avoid collision without loosing the connectivity even during the transient period of formation by applying the existing potential function based on the network connectivity estimation. If the estimation is correct, the potential function not only guarantees the connectivity maintenance but also allows some extra edges to be broken if the network remains connected. Numerical simulations are performed to verify the feasibility and performance of the proposed multi-subgroup formation control
- …
