60,883 research outputs found
Constituent quark model for nuclear stopping in high energy nuclear collisions
We study the nuclear stopping in high energy nuclear collisions using the
constituent quark model. It is assumed that wounded nucleons with different
number of interacted quarks hadronize in different ways. The probabilities of
having such wounded nucleons are evaluated for proton-proton, proton-nucleus
and nucleus-nucleus collisions. After examining our model in proton-proton and
proton-nucleus collisions and fixing the hadronization functions, it is
extended to nucleus-nucleus collisions. It is used to calculate the rapidity
distribution and the rapidity shift of final state protons in nucleus-nucleus
collisions. The computed results are in good agreement with the experimental
data on ^{32}\mbox{S} +\ ^{32}\mbox{S} at AGeV and
^{208}\mbox{Pb} +\ ^{208}\mbox{Pb} at AGeV. Theoretical
predictions are also given for proton rapidity distribution in ^{197}\mbox{Au}
+\ ^{197}\mbox{Au} at AGeV (BNL-RHIC). We predict that the
nearly baryon free region will appear in the midrapidity region and the
rapidity shift is .Comment: 40 pages, 16 Postscript figures, submitted to Phys. Rev.
Two-Electron Linear Intersubband Light Absorption in a Biased Quantum Well
We point out a novel manifestation of many-body correlations in the linear
optical response of electrons confined in a quantum well. Namely, we
demonstrate that along with conventional absorption peak at frequency close to
intersubband energy, there exists an additional peak at double frequency. This
new peak is solely due to electron-electron interactions, and can be understood
as excitation of two electrons by a single photon. The actual peak lineshape is
comprised of a sharp feature, due to excitation of pairs of intersubband
plasmons, on top of a broader band due to absorption by two single-particle
excitations. The two-plasmon contribution allows to infer intersubband plasmon
dispersion from linear absorption experiments.Comment: 4 pages, 3 figures; published versio
The Gaugino Code
Gauginos might play a crucial role in the search for supersymmetry at the
Large Hadron Collider (LHC). Mass predictions for gauginos are rather robust
and often related to the values of the gauge couplings. We analyse the ratios
of gaugino masses in the LHC energy range for various schemes of supersymmetry
breakdown and mediation. Three distinct mass patterns emerge.Comment: 42 pages, Latex; a discussion of deflected anomaly mediation added,
references adde
- …