70,639 research outputs found
A method to find quantum noiseless subsystems
We develop a structure theory for decoherence-free subspaces and noiseless
subsystems that applies to arbitrary (not necessarily unital) quantum
operations. The theory can be alternatively phrased in terms of the
superoperator perspective, or the algebraic noise commutant formalism. As an
application, we propose a method for finding all such subspaces and subsystems
for arbitrary quantum operations. We suggest that this work brings the
fundamental passive technique for error correction in quantum computing an
important step closer to practical realization.Comment: 5 pages, to appear in Physical Review Letter
Partial scaling transform of multiqubit states as a criterion of separability
The partial scaling transform of the density matrix for multiqubit states is
introduced to detect entanglement of quantum states. The transform contains
partial transposition as a special case. The scaling transform corresponds to
partial time scaling of subsystem (or partial Planck's constant scaling) which
was used to formulate recently separability criterion for continous variables.A
measure of entanglement which is a generalization of negativity measure is
introduced being based on tomographic probability description of spin states.Comment: 16 pages, 5 figures, submitted to J. Phys. A: Math. Ge
Dynamic model for failures in biological systems
A dynamic model for failures in biological organisms is proposed and studied
both analytically and numerically. Each cell in the organism becomes dead under
sufficiently strong stress, and is then allowed to be healed with some
probability. It is found that unlike the case of no healing, the organism in
general does not completely break down even in the presence of noise. Revealed
is the characteristic time evolution that the system tends to resist the stress
longer than the system without healing, followed by sudden breakdown with some
fraction of cells surviving. When the noise is weak, the critical stress beyond
which the system breaks down increases rapidly as the healing parameter is
raised from zero, indicative of the importance of healing in biological
systems.Comment: To appear in Europhys. Let
Cosmological Luminosity Evolution of QSO/AGN Population
We apply the observed optical/X-ray spectral states of the Galactic black
hole candidates (GBHCs) to the cosmological QSO luminosity evolution under the
assumptions that QSOs and GBHCs are powered by similar accretion processes and
that their emission mechanisms are also similar. The QSO luminosity function
(LF) evolution in various energy bands is strongly affected by the spectral
evolution which is tightly correlated with the luminosity evolution. We
generate a random sample of QSOs born nearly synchronously by allowing the QSOs
to have redshifts in a narrow range around an initial high redshift, black hole
masses according to a power-law, and mass accretion rates near Eddington rates.
The QSOs evolve as a single long-lived population on the cosmological time
scale. The pure luminosity evolution results in distinct luminosity evolution
features due to the strong spectral evolution. Most notably, different energy
bands (optical/UV, soft X-ray, and hard X-ray) show different evolutionary
trends and the hard X-ray LF in particular shows an apparent reversal of the
luminosity evolution (from decreasing to increasing luminosity) at low
redshifts, which is not seen in the conventional pure luminosity evolution
scenario without spectral evolution. The resulting mass function of black holes
(BHs), which is qualitatively consistent with the observed QSO LF evolution,
shows that QSO remnants are likely to be found as BHs with masses in the range
10**8-5x10**10 solar masses. The long-lived single population of QSOs are
expected to leave their remnants as supermassive BHs residing in rare, giant
elliptical galaxies.Comment: 9 pages, 2 figures, ApJ
Dynamic transition and Shapiro-step melting in a frustrated Josephson-junction array
We consider a two-dimensional fully frustrated Josephson-junction array
driven by combined direct and alternating currents. Interplay between the mode
locking phenomenon, manifested by giant Shapiro steps in the current-voltage
characteristics, and the dynamic phase transition is investigated at finite
temperatures. Melting of Shapiro steps due to thermal fluctuations is shown to
be accompanied by the dynamic phase transition, the universality class of which
is also discussed
Dynamic model of fiber bundles
A realistic continuous-time dynamics for fiber bundles is introduced and
studied both analytically and numerically. The equation of motion reproduces
known stationary-state results in the deterministic limit while the system
under non-vanishing stress always breaks down in the presence of noise.
Revealed in particular is the characteristic time evolution that the system
tends to resist the stress for considerable time, followed by sudden complete
rupture. The critical stress beyond which the complete rupture emerges is also
obtained
- …