546 research outputs found

    Macroscopic anisotropy in superconductors with anisotropic gaps

    Full text link
    It is shown within the weak-coupling model that the macroscopic superconducting anisotropy for materials with the gap varying on the Fermi surface cannot be characterized by a single number, unlike the case of clean materials with isotropic gaps. For clean uniaxial materials, the anisotropy parameter γ(T)\gamma (T) defined as the ratio of London penetration depths, λc/λab\lambda_c/\lambda_{ab}, is evaluated for all TT's. Within the two-gap model of MgB2_2, γ(T)\gamma (T) is an increasing function of TT.Comment: 4 pages, 2 figure

    Quantum effects in a superconducting glass model

    Full text link
    We study disordered Josephson junctions arrays with long-range interaction and charging effects. The model consists of two orthogonal sets of positionally disordered NN parallel filaments (or wires) Josephson coupled at each crossing and in the presence of a homogeneous and transverse magnetic field. The large charging energy (resulting from small self-capacitance of the ultrathin wires) introduces important quantum fluctuations of the superconducting phase within each filament. Positional disorder and magnetic field frustration induce spin-glass like ground state, characterized by not having long-range order of the phases. The stability of this phase is destroyed for sufficiently large charging energy. We have evaluated the temperature vs charging energy phase diagram by extending the methods developed in the theory of infinite-range spin glasses, in the limit of large magnetic field. The phase diagram in the different temperature regimes is evaluated by using variety of methods, to wit: semiclassical WKB and variational methods, Rayleigh-Schr\"{o}dinger perturbation theory and pseudospin effective Hamiltonians. Possible experimental consequences of these results are briefly discussed.Comment: 17 pages REVTEX. Two Postscript figures can be obtained from the authors. To appear in PR

    Penetration depth anisotropy in two-band superconductors

    Full text link
    The anisotropy of the London penetration depth is evaluated for two-band superconductors with arbitrary inter- and intra-band scattering times. If one of the bands is clean and the other is dirty in the absence of inter-band scattering, the anisotropy is dominated by the Fermi surface of the clean band and is weakly temperature dependent. The inter-band scattering also suppress the temperature dependence of the anisotropy

    Optical application and measurement of torque on microparticles of isotropic nonabsorbing material

    Get PDF
    We show how it is possible to controllably rotate or align microscopic particles of isotropic nonabsorbing material in a TEM00 Gaussian beam trap, with simultaneous measurement of the applied torque using purely optical means. This is a simple and general method of rotation, requiring only that the particle is elongated along one direction. Thus, this method can be used to rotate or align a wide range of naturally occurring particles. The ability to measure the applied torque enables the use of this method as a quantitative tool--the rotational equivalent of optical tweezers based force measurement. As well as being of particular value for the rotation of biological specimens, this method is also suitable for the development of optically-driven micromachines.Comment: 8 pages, 6 figure

    Ginzburg-Landau theory of vortices in a multi-gap superconductor

    Full text link
    The Ginzburg-Landau functional for a two-gap superconductor is derived within the weak-coupling BCS model. The two-gap Ginzburg-Landau theory is, then, applied to investigate various magnetic properties of MgB2 including an upturn temperature dependence of the transverse upper critical field and a core structure of an isolated vortex. Orientation of vortex lattice relative to crystallographic axes is studied for magnetic fields parallel to the c-axis. A peculiar 30-degree rotation of the vortex lattice with increasing strength of an applied field observed by neutron scattering is attributed to the multi-gap nature of superconductivity in MgB2.Comment: 11 page

    Constraints on the Nucleon Strange Form Factors at Q^2 ~ 0.1 GeV^2

    Get PDF
    We report the most precise measurement to date of a parity-violating asymmetry in elastic electron-proton scattering. The measurement was carried out with a beam energy of 3.03 GeV and a scattering angle =6 degrees, with the result A_PV = -1.14 +/- 0.24 (stat) +/- 0.06 (syst) parts per million. From this we extract, at Q^2 = 0.099 GeV^2, the strange form factor combination G_E^s + 0.080 G_M^s = 0.030 +/- 0.025 (stat) +/- 0.006 (syst) +/- 0.012 (FF) where the first two errors are experimental and the last error is due to the uncertainty in the neutron electromagnetic form factor. This result significantly improves current knowledge of G_E^s and G_M^s at Q^2 ~0.1 GeV^2. A consistent picture emerges when several measurements at about the same Q^2 value are combined: G_E^s is consistent with zero while G_M^s prefers positive values though G_E^s=G_M^s=0 is compatible with the data at 95% C.L.Comment: minor wording changes for clarity, updated references, dropped one figure to improve focu

    Green function techniques in the treatment of quantum transport at the molecular scale

    Full text link
    The theoretical investigation of charge (and spin) transport at nanometer length scales requires the use of advanced and powerful techniques able to deal with the dynamical properties of the relevant physical systems, to explicitly include out-of-equilibrium situations typical for electrical/heat transport as well as to take into account interaction effects in a systematic way. Equilibrium Green function techniques and their extension to non-equilibrium situations via the Keldysh formalism build one of the pillars of current state-of-the-art approaches to quantum transport which have been implemented in both model Hamiltonian formulations and first-principle methodologies. We offer a tutorial overview of the applications of Green functions to deal with some fundamental aspects of charge transport at the nanoscale, mainly focusing on applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references, submitted to Springer series "Lecture Notes in Physics

    Predicting stroke through genetic risk functions: the CHARGE Risk Score Project.

    Get PDF
    BACKGROUND AND PURPOSE: Beyond the Framingham Stroke Risk Score, prediction of future stroke may improve with a genetic risk score (GRS) based on single-nucleotide polymorphisms associated with stroke and its risk factors. METHODS: The study includes 4 population-based cohorts with 2047 first incident strokes from 22,720 initially stroke-free European origin participants aged ≥55 years, who were followed for up to 20 years. GRSs were constructed with 324 single-nucleotide polymorphisms implicated in stroke and 9 risk factors. The association of the GRS to first incident stroke was tested using Cox regression; the GRS predictive properties were assessed with area under the curve statistics comparing the GRS with age and sex, Framingham Stroke Risk Score models, and reclassification statistics. These analyses were performed per cohort and in a meta-analysis of pooled data. Replication was sought in a case-control study of ischemic stroke. RESULTS: In the meta-analysis, adding the GRS to the Framingham Stroke Risk Score, age and sex model resulted in a significant improvement in discrimination (all stroke: Δjoint area under the curve=0.016, P=2.3×10(-6); ischemic stroke: Δjoint area under the curve=0.021, P=3.7×10(-7)), although the overall area under the curve remained low. In all the studies, there was a highly significantly improved net reclassification index (P<10(-4)). CONCLUSIONS: The single-nucleotide polymorphisms associated with stroke and its risk factors result only in a small improvement in prediction of future stroke compared with the classical epidemiological risk factors for stroke

    Alendronate Inhibits VEGF Expression in Growth Plate Chondrocytes by Acting on the Mevalonate Pathway

    Get PDF
    Bisphosphonates decrease chondrocyte turnover at the growth plate and impact bone growth. Likewise vascular endothelial growth factor (VEGF) plays an important role in endochondral bone elongation by influencing chondrocyte turnover at the growth plate. To investigate whether the action of bisphosphonate on the growth plate works through VEGF, VEGF protein expression and isoform transcription in endochondral chondrocytes isolated from growing mice and treated with a clinically used bisphosphonate, alendronate, were assessed. Alendronate at 10µM and 100µM concentrations decreased secreted VEGF protein expression but not cell associated protein. Bisphosphonates are known to inhibit the mevalonate intracellular signaling pathway used by VEGF. Addition of the mevalonate pathway intermediates farnesol (FOH) and geranylgeraniol (GGOH) interacted with the low concentration of alendronate to further decrease secreted VEGF protein whereas FOH partially restored VEGF protein secretion when combined with the high alendronate. Similar to the protein data, the addition of alendronate decreased VEGF mRNA isoforms. VEGF mRNA levels were rescued by the GGOH mevalonate pathway intermediate at the low alendronate dose whereas neither intermediate consistently restored the VEGF mRNA levels at the high alendronate dose. Thus, the bisphophonate alendronate impairs growth plate chondrocyte turnover by down-regulating the secreted forms of VEGF mRNA and protein by inhibiting the mevalonate pathway
    corecore