30,412 research outputs found

    The Gaugino Code

    Get PDF
    Gauginos might play a crucial role in the search for supersymmetry at the Large Hadron Collider (LHC). Mass predictions for gauginos are rather robust and often related to the values of the gauge couplings. We analyse the ratios of gaugino masses in the LHC energy range for various schemes of supersymmetry breakdown and mediation. Three distinct mass patterns emerge.Comment: 42 pages, Latex; a discussion of deflected anomaly mediation added, references adde

    Prospects for Mirage Mediation

    Get PDF
    Mirage mediation reduces the fine-tuning in the minimal supersymmetric standard model by dynamically arranging a cancellation between anomaly-mediated and modulus-mediated supersymmetry breaking. We explore the conditions under which a mirage "messenger scale" is generated near the weak scale and the little hierarchy problem is solved. We do this by explicitly including the dynamics of the SUSY-breaking sector needed to cancel the cosmological constant. The most plausible scenario for generating a low mirage scale does not readily admit an extra-dimensional interpretation. We also review the possibilities for solving the mu/Bmu problem in such theories, a potential hidden source of fine-tuning.Comment: 14 page

    Comment on "Can one predict DNA Transcription Start Sites by Studying Bubbles?"

    Full text link
    Comment on T.S. van Erp, S. Cuesta-Lopez, J.-G. Hagmann, and M. Peyrard, Phys. Rev. Lett. 95, 218104 (2005) [arXiv: physics/0508094]

    Gaugino and Scalar Masses in the Landscape

    Get PDF
    In this letter we demonstrate the genericity of suppressed gaugino masses M_a \sim m_{3/2}/ln(M_P/m_{3/2}) in the IIB string landscape, by showing that this relation holds for D7-brane gauginos whenever the associated modulus is stabilised by nonperturbative effects. Although m_{3/2} and M_a take many different values across the landscape, the above small mass hierarchy is maintained. We show that it is valid for models with an arbitrary number of moduli and applies to both the KKLT and exponentially large volume approaches to Kahler moduli stabilisation. In the latter case we explicitly calculate gaugino and moduli masses for compactifications on the two-modulus Calabi-Yau P^4_[1,1,1,6,9]. In the large-volume scenario we also show that soft scalar masses are approximately universal with m_i^2 \sim m_{3/2}^2 (1 + \epsilon_i), with the non-universality parametrised by \epsilon_i \sim 1/ln (M_P/m_{3/2})^2 \sim 1/1000. We briefly discuss possible phenomenological implications of our results.Comment: 15 pages, JHEP style; v2. reference adde

    TeV scale partial mirage unification and neutralino dark matter

    Full text link
    We study the TeV scale partial mirage unification scenario, where the gluino and wino masses are degenerate around a TeV scale, but the bino mass is not degenerate. This scenario has phenomenologically interesting aspects. First, because of the degeneracy between the gluino and wino masses, this scenario does not have the little hierarchy problem, that is, the higgisino mass is around 150 GeV. The lightest superparticle is a mixture of the bino and higgsino, and can lead to a right amount of thermal relic density as a dark matter candidate

    Healing Length and Bubble Formation in DNA

    Full text link
    We have recently suggested that the probability for the formation of thermally activated DNA bubbles is, to a very good approximation, proportional to the number of soft AT pairs over a length L(n) that depend on the size nn of the bubble and on the temperature of the DNA. Here we clarify the physical interpretation of this length by relating it to the (healing) length that is required for the effect of a base-pair defect to become neligible. This provides a simple criteria to calculate L(n) for bubbles of arbitrary size and for any temperature of the DNA. We verify our findings by exact calculations of the equilibrium statistical properties of the Peyrard-Bishop-Dauxois model. Our method permits calculations of equilibrium thermal openings with several order of magnitude less numerical expense as compared with direct evaluations

    LHC Signature of Mirage Mediation

    Get PDF
    We study LHC phenomenology of mirage mediation scenario in which anomaly and modulus contributions to soft SUSY breaking terms are comparable to each other. A Monte Carlo study of mirage mediation, with model parameters α=1\alpha=1,M0=500 M_0=500 GeV, nM=1/2n_M=1/2, nH=1n_H=1 and tanÎČ=10\rm{tan}\beta=10, is presented. It is shown that masses of supersymmetric particles can be measured in a model independent way, providing information on SUSY breaking sector. In particular, the mass ratio of gluino to the lightest neutralino for the benchmark scenario is determined to be 1.9 \lesssim m_{\tildeg}/m_{\tilde\chi_1^0} \lesssim 3.1, well reproducing theoretical input value of mg~/mχ~10≃2.5m_{\tilde g}/m_{\tilde\chi_1^0} \simeq 2.5 which is quite distinctive from the predictions mg~/mχ~10≳6m_{\tilde g}/m_{\tilde\chi_1^0} \gtrsim 6 of other SUSY scenarios in which gaugino masses are unified at the GUT scale. The model parameters of mirage mediation can be also determined from various kinematic distributions

    Supersymmetry Breaking and Moduli Stabilization with Anomalous U(1) Gauge Symmetry

    Get PDF
    We examine the effects of anomalous U(1)_A gauge symmetry on soft supersymmetry breaking terms while incorporating the stabilization of the modulus-axion multiplet responsible for the Green-Schwarz (GS) anomaly cancellation mechanism. In case of the KKLT stabilization of the GS modulus, soft terms are determined by the GS modulus mediation, the anomaly mediation and the U(1)_A mediation which are generically comparable to each other, thereby yielding the mirage mediation pattern of superparticle masses at low energy scale. Independently of the mechanism of moduli stabilization and supersymmetry breaking, the U(1)_A D-term potential can not be an uplifting potential for de Sitter vacuum when the gravitino mass is smaller than the Planck scale by many orders of magnitude. We also discuss some features of the supersymmetry breaking by red-shifted anti-brane which is a key element of the KKLT moduli stabilization.Comment: 32 pages; references are adde

    The Fabry disease-associated lipid Lyso-Gb3 enhances voltage-gated calcium currents in sensory neurons and causes pain

    Get PDF
    Fabry disease is an X-linked lysosomal storage disorder characterised by accumulation of glycosphingolipids, and accompanied by clinical manifestations, such as cardiac disorders, renal failure, pain and peripheral neuropathy. Globotriaosylsphingosine (lyso-Gb3), a deacylated form of globotriaosylceramide (Gb3), has emerged as a marker of Fabry disease. We investigated the link between Gb3, lyso-Gb3 and pain. Plantar administration of lyso-Gb3 or Gb3 caused mechanical allodynia in healthy mice. In vitro application of 100nM lyso-Gb3 caused uptake of extracellular calcium in 10% of sensory neurons expressing nociceptor markers, rising to 40% of neurons at 1ÎŒM, a concentration that may occur in Fabry disease patients. Peak current densities of voltage-dependent Ca(2+) channels were substantially enhanced by application of 1ÎŒM lyso-Gb3. These studies suggest a direct role for lyso-Gb3 in the sensitisation of peripheral nociceptive neurons that may provide an opportunity for therapeutic intervention in the treatment of Fabry disease-associated pain
    • 

    corecore