10,314 research outputs found

    Magnetic Properties of Dilute Alloys: Equations for Magnetization and its Structural Fluctuations

    Full text link
    The dilute Heisenberg ferromagnet is studied taking into account fluctuations of magnetization caused by disorder. A self-consistent system of equations for magnetization and its mean quadratic fluctuations is derived within the configurationally averaged two-time temperature Green's function method. This system of equations is analised at low concentration of non-magnetic impurities. Mean relative quadratic fluctuations of magnetization are revealed to be proportional to the square of concentration of impurities.Comment: 16 pages, LaTe

    A cross-cultural study of mood in K-POP Songs

    Get PDF
    Prior research suggests that music mood is one of the most important criteria when people look for music – but the perception of mood may be subjective and can be influenced by many factors including the listeners’ cultural background. In recent years, the number of studies of music mood perceptions by various cultural groups and of automated mood classification of music from different cultures has been increasing. However, there has yet to be a well-established testbed for evaluating cross-cultural tasks in Music Information Retrieval (MIR). Moreover, most existing datasets in MIR consist mainly of Western music and the cultural backgrounds of the annotators were mostly not taken into consideration or were limited to one cultural group. In this study, we built a collection of 1,892 K-pop (Korean Pop) songs with mood annotations collected from both Korean and American listeners, based on three different mood models. We analyze the differences and similarities between the mood judgments of the two listener groups, and propose potential MIR tasks that can be evaluated on this dataset. © Xiao Hu, Jin Ha Lee, Kahyun Choi, J. Stephen Downie.published_or_final_versio

    A novel dual-layer bicomponent electrospun nanofibrous membrane for desalination by direct contact membrane distillation

    Full text link
    In this study, a bicomponent nanofibrous composite membrane was fabricated by electrospinning and was tested for desalination by direct contact membrane distillation (DCMD). The nanofibrous membrane was composed of a dual-layered structure of poly(vinylidene fluoride-co-hexafluoropropylene) (PH) nanofibers and polyacrylonitrile (PAN) microfibers. Morphological characterization showed slightly beaded cylindrical PH nanofibers with porosity of about 90%. The contact angles of PH and PAN nano/microfibers were 150° and 100°, respectively. The nanofibrous membranes were tested by DCMD and a high water flux of 45 and 30Lm-2h-1 was obtained for distilled water and 35gL-1 NaCl solutions as feed, respectively using DL2 membrane (i.e., 25/75 PH/PAN thickness ratio). The present dual-layer membrane showed better flux performance compared to a commercial flat-sheet membrane. The results suggest the potential of the dual-layer nanofibrous membrane for DCMD applications. © 2014 Elsevier B.V

    Dimerization-Induced Fermi-Surface Reconstruction in IrTe2

    Get PDF
    We report a de Haas-van Alphen (dHvA) oscillation study on IrTe2 single crystals showing complex dimer formations. By comparing the angle dependence of dHvA oscillations with band structure calculations, we show distinct Fermi surface reconstruction induced by a 1/5-type and a 1/8-type dimerizations. This verifies that an intriguing quasi-two-dimensional conducting plane across the layers is induced by dimerization in both cases. A phase transition to the 1/8 phase with higher dimer density reveals that local instabilities associated with intra-and interdimer couplings are the main driving force for complex dimer formations in IrTe2.X11149sciescopu

    Successive spin-flop transitions of a Neel-type antiferromagnet Li2MnO3 single crystal with a honeycomb lattice

    Get PDF
    We have carried out high magnetic field studies of single-crystalline Li2MnO3, a honeycomb lattice antiferromagnet. Its magnetic phase diagram was mapped out using magnetization measurements at applied fields up to 35 T. Our results show that it undergoes two successive meta-magnetic transitions around 9 T fields applied perpendicular to the ab plane (along the c* axis). These phase transitions are completely absent in the magnetization measured with the field applied along the ab plane. In order to understand this magnetic phase diagram, we developed a mean-field model starting from the correct Neel-type magnetic structure, consistent with our single crystal neutron diffraction data at zero field. Our model calculations succeeded in explaining the two meta-magnetic transitions that arise when Li2MnO3 enters two different spin-flop phases from the zero field Neel phase.open1187Nsciescopu

    Fouling and its control in membrane distillation-A review

    Full text link
    © 2014 Elsevier B.V. Membrane distillation (MD) is an emerging thermally-driven technology that poses a lot of promise in desalination, and water and wastewater treatment. Developments in membrane design and the use of alternative energy sources have provided much improvement in the viability of MD for different applications. However, fouling of membranes is still one of the major issues that hounds the long-term stability performance of MD. Membrane fouling is the accumulation of unwanted materials on the surface or inside the pores of a membrane that results to a detrimental effect on the overall performance of MD. If not addressed appropriately, it could lead to membrane damage, early membrane replacement or even shutdown of operation. Similar with other membrane separation processes, fouling of MD is still an unresolved problem. Due to differences in membrane structure and design, and operational conditions, the fouling formation mechanism in MD may be different from those of pressure-driven membrane processes. In order to properly address the problem of fouling, there is a need to understand the fouling formation and mechanism happening specifically for MD. This review details the different foulants and fouling mechanisms in the MD process, their possible mitigation and control techniques, and characterization strategies that can be of help in understanding and minimizing the fouling problem
    corecore