67,266 research outputs found
Dynamic model for failures in biological systems
A dynamic model for failures in biological organisms is proposed and studied
both analytically and numerically. Each cell in the organism becomes dead under
sufficiently strong stress, and is then allowed to be healed with some
probability. It is found that unlike the case of no healing, the organism in
general does not completely break down even in the presence of noise. Revealed
is the characteristic time evolution that the system tends to resist the stress
longer than the system without healing, followed by sudden breakdown with some
fraction of cells surviving. When the noise is weak, the critical stress beyond
which the system breaks down increases rapidly as the healing parameter is
raised from zero, indicative of the importance of healing in biological
systems.Comment: To appear in Europhys. Let
Critical currents for vortex defect motion in superconducting arrays
We study numerically the motion of vortices in two-dimensional arrays of
resistively shunted Josephson junctions. An extra vortex is created in the
ground states by introducing novel boundary conditions and made mobile by
applying external currents. We then measure critical currents and the
corresponding pinning energy barriers to vortex motion, which in the
unfrustrated case agree well with previous theoretical and experimental
findings. In the fully frustrated case our results also give good agreement
with experimental ones, in sharp contrast with the existing theoretical
prediction. A physical explanation is provided in relation with the vortex
motion observed in simulations.Comment: To appear in Physical Review
Defect Motion and Lattice Pinning Barrier in Josephson-Junction Ladders
We study motion of domain wall defects in a fully frustrated
Josephson-unction ladder system, driven by small applied currents. For small
system sizes, the energy barrier E_B to the defect motion is computed
analytically via symmetry and topological considerations. More generally, we
perform numerical simulations directly on the equations of motion, based on the
resistively-shunted junction model, to study the dynamics of defects, varying
the system size. Coherent motion of domain walls is observed for large system
sizes. In the thermodynamical limit, we find E_B=0.1827 in units of the
Josephson coupling energy.Comment: 7 pages, and to apear in Phys. Rev.
Design sensitivity analysis using EAL. Part 1: Conventional design parameters
A numerical implementation of design sensitivity analysis of builtup structures is presented, using the versatility and convenience of an existing finite element structural analysis code and its database management system. The finite element code used in the implemenatation presented is the Engineering Analysis Language (EAL), which is based on a hybrid method of analysis. It was shown that design sensitivity computations can be carried out using the database management system of EAL, without writing a separate program and a separate database. Conventional (sizing) design parameters such as cross-sectional area of beams or thickness of plates and plane elastic solid components are considered. Compliance, displacement, and stress functionals are considered as performance criteria. The method presented is being extended to implement shape design sensitivity analysis using a domain method and a design component method
First axion dark matter search with toroidal geometry
We firstly report an axion haloscope search with toroidal geometry. In this
pioneering search, we exclude the axion-photon coupling
down to about GeV over the axion mass range from 24.7
to 29.1 eV at a 95\% confidence level. The prospects for axion dark matter
searches with larger scale toroidal geometry are also considered.Comment: 5 pages, 5 figures, 1 table and to appear in PRD-R
1/t pressure and fermion behaviour of water in two dimensions
A variety of metal vacuum systems display the celebrated 1/t pressure, namely
power-law dependence on time t, with the exponent close to unity, the origin of
which has been a long-standing controversy. Here we propose a chemisorption
model for water adsorbates, based on the argument for fermion behaviour of
water vapour adsorbed on a stainless-steel surface, and obtain analytically the
power-law behaviour of pressure, with an exponent of unity. Further, the model
predicts that the pressure should depend on the temperature T according to
T^(3/2), which is indeed confirmed by our experiment. Our results should help
elucidate the unique characteristics of the adsorbed water.Comment: 11 pages, 4 figure
- …