3,595 research outputs found
Lifted Relax, Compensate and then Recover: From Approximate to Exact Lifted Probabilistic Inference
We propose an approach to lifted approximate inference for first-order
probabilistic models, such as Markov logic networks. It is based on performing
exact lifted inference in a simplified first-order model, which is found by
relaxing first-order constraints, and then compensating for the relaxation.
These simplified models can be incrementally improved by carefully recovering
constraints that have been relaxed, also at the first-order level. This leads
to a spectrum of approximations, with lifted belief propagation on one end, and
exact lifted inference on the other. We discuss how relaxation, compensation,
and recovery can be performed, all at the firstorder level, and show
empirically that our approach substantially improves on the approximations of
both propositional solvers and lifted belief propagation.Comment: Appears in Proceedings of the Twenty-Eighth Conference on Uncertainty
in Artificial Intelligence (UAI2012
Efficient Algorithms for Bayesian Network Parameter Learning from Incomplete Data
We propose an efficient family of algorithms to learn the parameters of a
Bayesian network from incomplete data. In contrast to textbook approaches such
as EM and the gradient method, our approach is non-iterative, yields closed
form parameter estimates, and eliminates the need for inference in a Bayesian
network. Our approach provides consistent parameter estimates for missing data
problems that are MCAR, MAR, and in some cases, MNAR. Empirically, our approach
is orders of magnitude faster than EM (as our approach requires no inference).
Given sufficient data, we learn parameters that can be orders of magnitude more
accurate
- …