46,930 research outputs found

    Gauge coupling renormalization in orbifold field theories

    Full text link
    We investigate the gauge coupling renormalization in orbifold field theories preserving 4-dimensional N=1 supersymmetry in the framework of 4-dimensional effective supergravity. As a concrete example, we consider the 5-dimensional Super-Yang-Mills theory on a slice of AdS_5. In our approach, one-loop gauge couplings can be determined by the loop-induced axion couplings and the tree level properties of 4-dimensional effective supergravity which are much easier to be computed.Comment: 18 pages, JHEP style; 1-loop corrections to gauge kinetic functions are fully computed, references are adde

    Signature of high temperature superconductivity in electron doped Sr2IrO4

    Full text link
    Sr2IrO4 was predicted to be a high temperature superconductor upon electron doping since it highly resembles the cuprates in crystal structure, electronic structure and magnetic coupling constants. Here we report a scanning tunneling microscopy/spectroscopy (STM/STS) study of Sr2IrO4 with surface electron doping by depositing potassium (K) atoms. At the 0.5-0.7 monolayer (ML) K coverage, we observed a sharp, V-shaped gap with about 95% loss of density of state (DOS) at EFand visible coherence peaks. The gap magnitude is 25-30 meV for 0.5-0.6 ML K coverage and it closes around 50 K. These behaviors exhibit clear signature of superconductivity. Furthermore, we found that with increased electron doping, the system gradually evolves from an insulating state to a normal metallic state, via a pseudogap-like state and possible superconducting state. Our data suggest possible high temperature superconductivity in electron doped Sr2IrO4, and its remarkable analogy to the cuprates.Comment: 11 pages, 5 figure

    Giant phonon anomalies in the pseudo-gap phase of TiOCl

    Full text link
    We report infrared and Raman spectroscopy results of the spin-1/2 quantum magnet TiOCl. Giant anomalies are found in the temperature dependence of the phonon spectrum, which hint to unusual coupling of the electronic degrees of freedom to the lattice. These anomalies develop over a broad temperature interval, suggesting the presence of an extended fluctuation regime. This defines a pseudo-gap phase, characterized by a local spin-gap. Below 100 K a dimensionality cross-over leads to a dimerized ground state with a global spin-gap of about 2Δspin≈\Delta_{spin}\approx~430 K.Comment: 4 pages, 3 figures, for further information see http://www.peter-lemmens.d

    Dynamical symmetry breaking in Gauge-Higgs unification of 5D N=1{\mathcal N}=1 SUSY theory

    Full text link
    We study the dynamical symmetry breaking in the gauge-Higgs unification of the 5D N=1{\mathcal N}=1 SUSY theory, compactified on an orbifold, S1/Z2S^1/Z_2. This theory identifies Wilson line degrees of freedoms as ``Higgs doublets''. We consider SU(3)c×SU(3)WSU(3)_c \times SU(3)_W and SU(6) models, in which the gauge symmetries are reduced to SU(3)c×SU(2)L×U(1)YSU(3)_c \times SU(2)_L \times U(1)_Y and SU(3)c×SU(2)L×U(1)Y×U(1)SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1), respectively, through the orbifolding boundary conditions. Quarks and leptons are bulk fields, so that Yukawa interactions can be derived from the 5D gauge interactions. We estimate the one loop effective potential of ``Higgs doublets'', and analyze the vacuum structures in these two models. We find that the effects of bulk quarks and leptons destabilize the suitable electro-weak vacuum. We show that the introduction of suitable numbers of extra bulk fields possessing the suitable representations can realize the appropriate electro-weak symmetry breaking.Comment: 15 pages, 4 figures;disscutions on Higgs quartic couplings adde
    • …
    corecore