11 research outputs found

    Reduction of Activation Energy Barrier of Stone-Wales Transformation in Endohedral Metallofullerenes

    Full text link
    We examine effects of encapsulated metal atoms inside a C60_{60} molecule on the activation energy barrier to the Stone-Wales transformation using {\it ab initio} calculations. The encapsulated metal atoms we study are K, Ca and La which nominally donate one, two and three electrons to the C60_{60} cage, respectively. We find that isomerization of the endohedral metallofullerene via the Stone-Wales transformation can occur more easily than that of the empty fullerene owing to the charge transfer. When K, Ca and La atoms are encapsulated inside the fullerene, the activation energy barriers are lowered by 0.30, 0.55 and 0.80 eV, respectively compared with that of the empty C60_{60} (7.16 eV). The lower activation energy barrier of the Stone-Wales transformation implies the higher probability of isomerization and coalescence of metallofullerenes, which require a series of Stone-Wales transformations.Comment: 13 pages, 3 figures, 1 tabl

    Controlling Gas Generation of Li-Ion Battery through Divinyl Sulfone Electrolyte Additive

    No full text
    The focus of mainstream lithium-ion battery (LIB) research is on increasing the battery’s capacity and performance; however, more effort should be invested in LIB safety for widespread use. One aspect of major concern for LIB cells is the gas generation phenomenon. Following conventional battery engineering practices with electrolyte additives, we examined the potential usage of electrolyte additives to address this specific issue and found a feasible candidate in divinyl sulfone (DVSF). We manufactured four identical battery cells and employed an electrolyte mixture with four different DVSF concentrations (0%, 0.5%, 1.0%, and 2.0%). By measuring the generated gas volume from each battery cell, we demonstrated the potential of DVSF additives as an effective approach for reducing the gas generation in LIB cells. We found that a DVSF concentration of only 1% was necessary to reduce the gas generation by approximately 50% while simultaneously experiencing a negligible impact on the cycle life. To better understand this effect on a molecular level, we examined possible electrochemical reactions through ab initio molecular dynamics (AIMD) based on the density functional theory (DFT). From the electrolyte mixture’s exposure to either an electrochemically reductive or an oxidative environment, we determined the reaction pathways for the generation of CO2 gas and the mechanism by which DVSF additives effectively blocked the gas’s generation. The key reaction was merging DVSF with cyclic carbonates, such as FEC. Therefore, we concluded that DVSF additives could offer a relatively simplistic and effective approach for controlling the gas generation in lithium-ion batteries
    corecore