12 research outputs found

    First-time comparison between NO2 vertical columns from GEMS and Pandora measurements

    Get PDF
    The Geostationary Environmental Monitoring Spectrometer (GEMS) is a UV&ndash;visible spectrometer onboard the GEO-KOMPSAT-2B satellite launched into geostationary orbit in February 2020. To evaluate GEMS NO2 column data, comparison was carried out using NO2 vertical column density (VCD) measured using direct-sunlight observations by the Pandora spectrometer system at four sites in Seosan, South Korea, during November 2020 to January 2021. Correlation coefficients between GEMS and Pandora NO2 data at four sites ranged from 0.35 to 0.48, with root mean square errors (RMSEs) from 4.7 &times; 1015 molec. cm-2 to 5.5 &times; 1015 molec. cm-2 for cloud fraction (CF) &lt; 0.7. Higher correlation coefficients of 0.62&ndash;0.78 with lower RMSEs from 3.3 &times; 1015 molec. cm-2 to 4.3 &times; 1015 molec. cm-2 were found with CF &lt; 0.3, indicating the higher sensitivity of GEMS to atmospheric NO2 in less-cloudy conditions. Overall, GEMS NO2 column data tend to be lower than those of Pandora due to differences in representative spatial coverage, with a large negative bias under high-CF conditions. With correction for horizontal representativeness in Pandora measurement coverage, the correlation coefficients range from 0.69 to 0.81 with RMSEs from 3.2 &times; 1015 molec. cm-2 to 4.9 &times; 1015 molec. cm-2 were achieved for CF &lt; 0.3, showing the better correlation with the correction than that without the correction.</p

    First-time comparison between NO2 vertical columns from Geostationary Environmental Monitoring Spectrometer (GEMS) and Pandora measurements

    Get PDF
    The Geostationary Environmental Monitoring Spectrometer (GEMS) is a UV-visible (UV-Vis) spectrometer on board the GEO-KOMPSAT-2B (Geostationary Korea Multi-Purpose Satellite 2B) satellite launched into a geostationary orbit in February 2020. To evaluate the GEMS NO2 total column data, a comparison was carried out using the NO2 vertical column density (VCD) that measured direct sunlight using the Pandora spectrometer system at four sites in Seosan, South Korea, from November 2020 to January 2021. Correlation coefficients between GEMS and Pandora NO2 data at four sites ranged from 0.35 to 0.48, with root mean square errors (RMSEs) from 4.7×1015 to 5.5×1015 molec. cm−2 for a cloud fraction (CF) &lt;0.7. Higher correlation coefficients of 0.62–0.78 with lower RMSEs from 3.3×1015 to 5.0×1015 molec. cm−2 were found with CF &lt;0.3, indicating the higher sensitivity of GEMS to atmospheric NO2 in less cloudy conditions. Overall, the GEMS NO2 total column data tended to be lower than the Pandora data, owing to differences in the representative spatial coverage, with a large negative bias under high CF conditions. With a correction for horizontal representativeness in the Pandora measurement coverage, correlation coefficients ranging from 0.69 to 0.81, with RMSEs from 3.2×1015 to 4.9×1015 molec. cm−2, were achieved for CF &lt;0.3, showing a better correlation with the correction than without the correction.</p

    A First Approach to Aerosol Classification Using Space-Borne Measurement Data: Machine Learning-Based Algorithm and Evaluation

    No full text
    A new method was developed for classifying aerosol types involving a machine-learning approach to the use of satellite data. An Aerosol Robotic NETwork (AERONET)-based aerosol-type dataset was used as a target variable in a random forest (RF) model. The contributions of satellite input variables to the RF-based model were quantified to determine an optimal set of input variables. The new method, based on inputs of satellite variables, allows the classification of seven aerosol types: pure dust, dust-dominant mixed, pollution-dominant mixed aerosols, and pollution aerosols (strongly, moderately, weakly, and non-absorbing). The performance of the model was statistically evaluated using AERONET data excluded from the model training dataset. Model accuracy for classifying the seven aerosol types was 59%, improving to 72% for four types (pure dust, dust-dominant mixed, strongly absorbing, and non-absorbing). The performance of the model was evaluated against an earlier aerosol classification method based on the wavelength dependence of single-scattering albedo (SSA) and fine-mode-fraction values from AERONET. Typical wavelength dependences of SSA for individual aerosol types are consistent with those obtained for aerosol types by the new method. This study demonstrates that an RF-based model is capable of satellite aerosol classification with sensitivity to the contribution of non-spherical particles

    A First Approach to Aerosol Classification Using Space-Borne Measurement Data: Machine Learning-Based Algorithm and Evaluation

    No full text
    A new method was developed for classifying aerosol types involving a machine-learning approach to the use of satellite data. An Aerosol Robotic NETwork (AERONET)-based aerosol-type dataset was used as a target variable in a random forest (RF) model. The contributions of satellite input variables to the RF-based model were quantified to determine an optimal set of input variables. The new method, based on inputs of satellite variables, allows the classification of seven aerosol types: pure dust, dust-dominant mixed, pollution-dominant mixed aerosols, and pollution aerosols (strongly, moderately, weakly, and non-absorbing). The performance of the model was statistically evaluated using AERONET data excluded from the model training dataset. Model accuracy for classifying the seven aerosol types was 59%, improving to 72% for four types (pure dust, dust-dominant mixed, strongly absorbing, and non-absorbing). The performance of the model was evaluated against an earlier aerosol classification method based on the wavelength dependence of single-scattering albedo (SSA) and fine-mode-fraction values from AERONET. Typical wavelength dependences of SSA for individual aerosol types are consistent with those obtained for aerosol types by the new method. This study demonstrates that an RF-based model is capable of satellite aerosol classification with sensitivity to the contribution of non-spherical particles

    Satellite-Based Aerosol Classification for Capital Cities in Asia Using a Random Forest Model

    No full text
    Aerosol types in Asian capital cities were classified using a random forest (RF) satellite-based aerosol classification model during 2018–2020 in an investigation of the contributions of aerosol types, with or without Aerosol Robotic Network (AERONET) observations. In this study, we used the recently developed RF aerosol classification model to detect and classify aerosols into four types: pure dust, dust-dominated aerosols, strongly absorbing aerosols, and non-absorbing aerosols. Aerosol optical and microphysical properties for each aerosol type detected by the RF model were found to be reasonably consistent with those for typical aerosol types. In Asian capital cities, pollution-sourced aerosols, especially non-absorbing aerosols, were found to predominate, although Asian cities also tend to be seasonally affected by natural dust aerosols, particularly in East Asia (March–May) and South Asia (March–August). No specific seasonal effects on aerosol type were detected in Southeast Asia, where there was a predominance of non-absorbing aerosols. The aerosol types detected by the RF model were compared with those identified by other aerosol classification models. This study indicates that the satellite-based RF model may be used as an alternative in the absence of AERONET sites or observations

    Development of Two-Dimensional Visibility Estimation Model Using Machine Learning: Preliminary Results for South Korea

    No full text
    A two-dimensional visibility estimation model was developed, based on random forest (RF), a machine learning-based technique. A geostatistical method was introduced into the visibility estimation model for the first time to interpolate point measurement data to gridded data spatially with a pixel size of 10 km. The RF-based model was trained using gridded visibility data, as well as meteorological and air pollution input variable data, for each location in South Korea, which were characterized by complex geographical features and high air pollution levels. Generally, relative humidity was the most important input variable for the visibility estimation (average mean decrease accuracy: 35%). However, PM2.5 tended to be the most crucial variable in polluted regions. The spatial interpolation was found to result in an additional visibility estimation error of 500 m in locations where no adjacent visibility observations within 0.2&deg; were available. The performance of the proposed model was preliminarily assessed. Generally, the best detection performance was achieved in good visibility conditions (visibility range: 10 to 20 km). This study is the first to demonstrate a visibility estimation model based on a geostatistical method and machine learning, which can provide visibility information in locations for which no observations exist

    Estimation of Surface NO2 Volume Mixing Ratio in Four Metropolitan Cities in Korea Using Multiple Regression Models with OMI and AIRS Data

    No full text
    Surface NO2 volume mixing ratio (VMR) at a specific time (13:45 Local time) (NO2 VMRST) and monthly mean surface NO2 VMR (NO2 VMRM) are estimated for the first time using three regression models with Ozone Monitoring Instrument (OMI) data in four metropolitan cities in South Korea: Seoul, Gyeonggi, Daejeon, and Gwangju. Relationships between the surface NO2 VMR obtained from in situ measurements (NO2 VMRIn-situ) and tropospheric NO2 vertical column density obtained from OMI from 2007 to 2013 were developed using regression models that also include boundary layer height (BLH) from Atmospheric Infrared Sounder (AIRS) and surface pressure, temperature, dew point, and wind speed and direction. The performance of the regression models is evaluated via comparison with the NO2 VMRIn-situ for two validation years (2006 and 2014). Of the three regression models, a multiple regression model shows the best performance in estimating NO2 VMRST and NO2 VMRM. In the validation period, the average correlation coefficient (R), slope, mean bias (MB), mean absolute error (MAE), root mean square error (RMSE), and percent difference between NO2 VMRIn-situ and NO2 VMRST estimated by the multiple regression model are 0.66, 0.41, −1.36 ppbv, 6.89 ppbv, 8.98 ppbv, and 31.50%, respectively, while the average corresponding values for the other two models are 0.75, 0.41, −1.40 ppbv, 3.59 ppbv, 4.72 ppbv, and 16.59%, respectively. All three models have similar performance for NO2 VMRM, with average R, slope, MB, MAE, RMSE, and percent difference between NO2 VMRIn-situ and NO2 VMRM of 0.74, 0.49, −1.90 ppbv, 3.93 ppbv, 5.05 ppbv, and 18.76%, respectively

    Investigations of the Diurnal Variation of Vertical HCHO Profiles Based on MAX-DOAS Measurements in Beijing: Comparisons with OMI Vertical Column Data

    No full text
    An investigation into the diurnal characteristics of vertical formaldehyde (HCHO) profiles was conducted based on multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements in Beijing during the CAREBEIJING campaign, covering a month-long period through August and September 2006. Vertical HCHO profiles were retrieved based on a combined differential optical absorption spectroscopy (DOAS) technique and an optimal estimation method (OEM). The HCHO volume-mixing ratio (VMR) was found to be highest in the layer from the surface up to an altitude of 1 km and to decrease with altitude above this layer. In all retrieved profiles, HCHO was not detected in the layer from 3–4 km. Over the diurnal cycle, the HCHO VMR values were generally highest at 15:00 local time (LT) and were lower in the morning and late afternoon. The mean HCHO VMRs were 6.17, 1.82, and 0.80 ppbv for the 0–1, 1–2, and 2–3-km layers, respectively, at 15:00 LT, whereas they were 3.54 (4.79), 1.06 (1.43), and 0.46 (0.63) ppbv for the 0–1, 1–2, and 2–3-km layers, respectively, at 09:00 (17:00) LT. The HCHO VMRs reached their highest values at 15:00 LT on August 19, which were 17.71, 5.20, and 2.31 ppbv for the 0–1, 1–2, and 2–3-km layers, respectively. This diurnal pattern implies that the photo-oxidation of volatile organic compounds (VOCs) was most active at 15:00 LT for several days during the campaign period. In a comparison of the derived HCHO VCDs with those obtained from the Ozone Monitoring Instrument (OMI) measurements, the HCHO vertical column density (VCD) values obtained from the OMI measurements tend to be smaller than those from the MAX-DOAS

    Investigation of Aerosol Peak Height Effect on PBL and Volcanic Air Mass Factors for SO2 Column Retrieval from Space-Borne Hyperspectral UV Sensors

    No full text
    We investigate the effects of aerosol peak height (APH) and various parameters on the air mass factor (AMF) for SO2 retrieval. Increasing aerosol optical depth (AOD) leads to multiple scattering within the planetary boundary layer (PBL) and an increase in PBL SO2 AMF. However, under high AOD conditions, aerosol shielding effects dominate, which causes the PBL SO2 AMF to decrease with increasing AOD. The height of the SO2 layer and the APH are found to significantly influence the PBL SO2 AMF under high AOD conditions. When the SO2 and aerosol layers are of the same height, aerosol multiple scattering occurs dominantly within the PBL, which leads to an increase in the PBL SO2 AMF. When the APH is greater than the SO2 layer height, aerosol shielding effects dominate, which decreases the PBL SO2 AMF. When the SO2 and aerosol layers are of the same height under low AOD and solar zenith angle (SZA) conditions, increased surface reflectance is found to significantly increase the PBL SO2 AMF. However, high AOD dominates the surface reflectance contribution to PBL SO2 AMF. Under high SZA conditions, Rayleigh scattering contributes to a reduction in the light path length and PBL SO2 AMF. For volcanic SO2 AMF, high SZA enhances the light path length within the volcanic SO2 layer, as well as the volcanic SO2 AMF, because of the negligible photon loss by Rayleigh scattering at high altitudes. High aerosol loading and an APH that is greater than the SO2 peak height lead to aerosol shielding effects, which reduce the volcanic SO2 AMF. The SO2 AMF errors are also quantified as a function of uncertainty in the input data of AOD, APH, and surface reflectance. The SO2 AMF sensitivities and error analysis provided here can be used to develop effective error reduction strategies for satellite-based SO2 retrievals

    Retrieval Accuracy of HCHO Vertical Column Density from Ground-Based Direct-Sun Measurement and First HCHO Column Measurement Using Pandora

    No full text
    In the present study, we investigate the effects of signal to noise (SNR), slit function (FWHM), and aerosol optical depth (AOD) on the accuracy of formaldehyde (HCHO) vertical column density (HCHOVCD) using the ground-based direct-sun synthetic radiance based on differential optical absorption spectroscopy (DOAS). We found that the effect of SNR on HCHO retrieval accuracy is larger than those of FWHM and AOD. When SNR = 650 (1300), FWHM = 0.6, and AOD = 0.2, the absolute percentage difference (APD) between the true HCHOVCD values and those retrieved ranges from 54 (30%) to 5% (1%) for the HCHOVCD of 5.0 × 1015 and 1.1 × 1017 molecules cm−2, respectively. Interestingly, the maximum AOD effect on the HCHO accuracy was found for the HCHOVCD of 3.0 × 1016 molecules cm−2. In addition, we carried out the first ground-based direct-sun measurements in the ultraviolet (UV) wavelength range to retrieve the HCHOVCD using Pandora in Seoul. The HCHOVCD was low at 12:00 p.m. local time (LT) in all seasons, whereas it was high in the morning (10:00 a.m. LT) and late afternoon (4:00 p.m. LT), except in winter. The maximum HCHOVCD values were 2.68 × 1016, 3.19 × 1016, 2.00 × 1016, and 1.63 × 1016 molecules cm−2 at 10:00 a.m. LT in spring, 10:00 a.m. LT in summer, 1:00 p.m. LT in autumn, and 9:00 a.m. LT in winter, respectively. The minimum values of Pandora HCHOVCD were 1.63 × 1016, 2.23 × 1016, 1.26 × 1016, and 0.82 × 1016 molecules cm−2 at around 1:45 p.m. LT in spring, summer, autumn, and winter, respectively. This seasonal pattern of high values in summer and low values in winter implies that photo-oxidation plays an important role in HCHO production. The correlation coefficient (R) between the monthly HCHOVCD values from Pandora and those from the Ozone Monitoring Instrument (OMI) is 0.61, and the slope is 1.25
    corecore