6,823 research outputs found

    Flux Noise in MgB2 Thin Films

    Full text link
    We have performed flux noise and AC-susceptibility measurements on two 400 nm thick MgB2_2 films. Both measurement techniques give information about the vortex dynamics in the sample, and hence the superconducting transition, and can be linked to each other through the fluctuation-dissipation-theorem. The transition widths for the two films are 0.3 and 0.8 K, respectively, and the transitions show a multi step-like behavior in the AC-susceptibility measurements. The same phenomenon is observed in the flux noise measurements through a change in the frequency dependence of the spectral density at each step in the transition. The results are discussed and interpreted in terms of vortices carrying an arbitrary fraction of a flux quantum as well as in terms of different macroscopic regions in the films having slightly different compositions, and hence, different critical temperatures.Comment: 8 pages, 4 figures, conference contribution to "Fluctuations and Noise", Santa Fe, New mexico 1-4 june 200

    Growth of superconducting MgB2 thin films via postannealing techniques

    Full text link
    We report the effect of annealing on the superconductivity of MgB2 thin films as functions of the postannealing temperature in the range from 700 C to 950 C and of the postannealing time in the range from 30 min to 120 min. On annealing at 900 C for 30 min, we obtained the best-quality MgB2 films with a transition temperature of 39 K and a critical current density of ~ 10^7 A/cm^2. Using the scanning electron microscopy, we also investigated the film growth mechanism. The samples annealed at higher temperatures showed the larger grain sizes, well-aligned crystal structures with preferential orientations along the c-axis, and smooth surface morphologies. However, a longer annealing time prevented the alignment of grains and reduced the superconductivity, indicating a strong interfacial reaction between the substrate and the MgB2 film.Comment: 7 pages, 4 figures include

    Polymerization of ethylene oxide using yttrium isopropoxide

    Get PDF
    Well defined poly(ethylene oxide)s were prepared using yttrium isopropoxide as an initiator. End group analysis using 1H- and 13C NMR spectroscopy revealed that only polymers with isopropyl ether and hydroxyl end groups were produced. The molecular weight is controlled by the initial amount of initiator added and low polydispersity polymer (Mw/Mn ≈ 1.1) was isolated. Sequential polymerization indicated the suitability of this initiator for macromolecular engineering

    Effect of magnetic order on the superfluid response of single-crystal ErNi2_{2}B2_{2}C: A penetration depth study

    Full text link
    We report measurements of the in-plane magnetic penetration depth Δλ\Delta \lambda (T) in single crystals of ErNi2_{2}B2_{2}C down to \sim0.1 K using a tunnel-diode based, self-inductive technique at 21 MHz. We observe four features: (1) a slight dip in Δλ\Delta \lambda (T) at the Neˊ\acute{e}el temperature TNT_{N} = 6.0 K, (2) a peak at TWFMT_{WFM} = 2.3 K, where a weak ferromagnetic component sets in, (3) another maximum at 0.45 K, and (4) a final broad drop down to 0.1 K. Converting to superfluid density ρs\rho_{s}, we see that the antiferromagnetic order at 6 K only slightly depresses superconductivity. We seek to explain some of the above features in the context of antiferromagnetic superconductors, where competition between the antiferromagnetic molecular field and spin fluctuation scattering determines increased or decreased pairbreaking. Superfluid density data show only a slight decrease in pair density in the vicinity of the 2.3 K feature, thus supporting other evidences against bulk ferromagnetism in this temperature range.Comment: 15 pages, 5 figure
    corecore