12 research outputs found
U2AF65-Dependent SF3B1 Function in SMN Alternative Splicing
Splicing factor 3b subunit 1 (SF3B1) is an essential protein in spliceosomes and mutated frequently in many cancers. While roles of SF3B1 in single intron splicing and roles of its cancer-linked mutant in aberrant splicing have been identified to some extent, regulatory functions of wild-type SF3B1 in alternative splicing (AS) are not well-understood yet. Here, we applied RNA sequencing (RNA-seq) to analyze genome-wide AS in SF3B1 knockdown (KD) cells and to identify a large number of skipped exons (SEs), with a considerable number of alternative 5′ splice-site selection, alternative 3′ splice-site selection, mutually exclusive exons (MXE), and retention of introns (RI). Among altered SEs by SF3B1 KD, survival motor neuron 2 (SMN2) pre-mRNA exon 7 splicing was a regulatory target of SF3B1. RT-PCR analysis of SMN exon 7 splicing in SF3B1 KD or overexpressed HCT116, SH-SY5Y, HEK293T, and spinal muscular atrophy (SMA) patient cells validated the results. A deletion mutation demonstrated that the U2 snRNP auxiliary factor 65 kDa (U2AF65) interaction domain of SF3B1 was required for its function in SMN exon 7 splicing. In addition, mutations to lower the score of the polypyrimidine tract (PPT) of exon 7, resulting in lower affinity for U2AF65, were not able to support SF3B1 function, suggesting the importance of U2AF65 in SF3B1 function. Furthermore, the PPT of exon 7 with higher affinity to U2AF65 than exon 8 showed significantly stronger interactions with SF3B1. Collectively, our results revealed SF3B1 function in SMN alternative splicing
The Definition of Perennial Streams Based on a Wet Channel Network Extracted from LiDAR Data
This study assesses the characteristics of perennial streams using the dimensionless relationship between streamflow exceedance probability and the wet channel ratio based on a wet channel network extracted from light detection and ranging (LiDAR) data. LiDAR provides topographic data and signals’ intensity in high-resolution and with high accuracy to provide useful information for drainage networks and channel network extraction. In this study, a valley network and wet channel are extracted from LiDAR topographic and signals’ intensity information with a spatial resolution of 1 meter. Based on the available LiDAR data and streamflow observations from across the United States, we selected 30 watersheds with various climate conditions and analyzed the characteristics of their perennial streams. The wet channel ratio and perennial stream ratio were developed to define a perennial stream using the observed streamflow and the identified wet channel. The results of this study are consistent with previous studies on the definition of a perennial stream through transformation into a dimensionless form and confirmed the possibility of applying the wet channel ratio as an alternative parameter to define a perennial stream
Evaluating the Drainage Density Characteristics on Climate and Drainage Area Using LiDAR Data
The purpose of this study is to identify the relationship between drainage density and climate, as represented by the climate aridity index, and to understand the relationship between drainage density and drainage area. A total of 121 study sites with low human impact, and a wide range of climate aridity index 0.3 (humid)–10.4 (arid), were selected based on the availability of light detection and ranging (LiDAR) data, producing a digital elevation model (DEM) with a spatial resolution of 1 m. A curvature-based method, incorporating both positive and negative curvature information, was used to extract the valley (drainage) network from the LiDAR-based DEMs. Drainage density and climate aridity index exhibited a monotonically increasing trend, contrary to the previous results that have shown a U-shaped relationship. This discrepancy was caused by the selection of watersheds with extensive human activity in the previous study. One-meter resolution DEM produced greater drainage density than the previous studies with a coarse spatial resolution of 30 m as small valleys are not detectable in low-resolution topography datasets. The discrepancy between the previous study and the current study results encouraged further investigation of the impact of the drainage area (watershed size). A negative correlation between drainage density and drainage area was reconfirmed, while a stronger decreasing trend was observed in arid regions than in humid regions
Eltrombopag as an Allosteric Inhibitor of the METTL3-14 Complex Affecting the m6A Methylation of RNA in Acute Myeloid Leukemia Cells
N6A-methyladenosine (m6A) post-transcriptional modification, the most abundant internal RNA modification, is catalyzed by the METTL3-14 methyltransferase complex. Recently, attention has been drawn to the METTL3-14 complex regarding its significant roles in the pathogenesis of acute myeloid leukemia (AML), attracting the potential of novel therapeutic targets for the disease. Herein, we report the identification and characterization of eltrombopag as a selective allosteric inhibitor of the METTL3-14 complex. Eltrombopag exhibited selective inhibitory activity in the most active catalytic form of the METTL3-14 complex by direct binding, and the mechanism of inhibition was confirmed as a noncompetitive inhibition by interacting at a putative allosteric binding site in METTL3, which was predicted by cavity search and molecular docking studies. At a cellular level, eltrombopag displayed anti-proliferative effects in the relevant AML cell line, MOLM-13, in correlation with a reduction in m6A levels. Molecular mechanism studies of eltrombopag using m6A-seq analysis provided further evidence of its cellular function by determining the hypomethylation of leukemogenic genes in eltrombopag-treated MOLM-13 cells and the overlapping of the pattern with those of METTL3-knockdown MOLM-13 cells. In conclusion, eltrombopag was first disclosed as a functional METTL3-14 allosteric inhibitor in AML cells, which could be utilized for the further development of novel anti-AML therapy
HO-1089 and HO-1197, Novel Herbal Formulas, Have Antitumor Effects via Suppression of PLK1 (Polo-like Kinase 1) Expression in Hepatocellular Carcinoma
The treatment for hepatocellular carcinoma (HCC), a severe cancer with a very high mortality rate, begins with the surgical resection of the primary tumor. For metastasis or for tumors that cannot be resected, sorafenib, a multi-tyrosine protein kinase inhibitor, is usually the drug of choice. However, typically, neither resection nor sorafenib provides a cure. The drug discovery strategy for HCC therapy is shifting from monotherapies to combination regimens that combine an immuno-oncology agent with an angiogenesis inhibitor. Herbal formulas can be included in the combinations used for this personalized medicine approach. In this study, we evaluated the HCC anticancer efficacy of the new herbal formula, HO-1089. Treatment with HO-1089 inhibited HCC tumor growth by inducing DNA damage-mediated apoptosis and by arresting HCC cell replication during the G2/M phase. HO-1089 also attenuated the migratory capacity of HCC cells via the inhibition of the expression of EMT-related proteins. Biological pathways involved in metabolism and the mitotic cell cycle were suppressed in HO-1089-treated HCC cells. HO-1089 attenuated expression of the G2/M phase regulatory protein, PLK1 (polo-like kinase 1), in HCC cells. HCC xenograft mouse models revealed that the daily oral administration of HO-1089 retarded tumor growth without systemic toxicity in vivo. The use of HO-1197, a novel herbal formula derived from HO-1089, resulted in statistically significant improved anticancer efficacy relative to HO-1089 in HCC. These results suggest that HO-1089 is a safe and potent integrated natural medicine for HCC therapy
SRSF6 Regulates the Alternative Splicing of the Apoptotic Fas Gene by Targeting a Novel RNA Sequence
Alternative splicing (AS) is a procedure during gene expression that allows the production of multiple mRNAs from a single gene, leading to a larger number of proteins with various functions. The alternative splicing (AS) of Fas (Apo-1/CD95) pre-mRNA can generate membrane-bound or soluble isoforms with pro-apoptotic and anti-apoptotic functions. SRSF6, a member of the Serine/Arginine-rich protein family, plays essential roles in both constitutive and alternative splicing. Here, we identified SRSF6 as an important regulatory protein in Fas AS. The cassette exon inclusion of Fas was decreased by SRSF6-targeting shRNA treatment, but increased by SRSF6 overexpression. The deletion and substitution mutagenesis of the Fas minigene demonstrated that the UGCCAA sequence in the cassette exon of the Fas gene causes the functional disruption of SRSF6, indicating that these sequences are essential for SRSF6 function in Fas splicing. In addition, biotin-labeled RNA-pulldown and immunoblotting analysis showed that SRSF6 interacted with these RNA sequences. Mutagenesis in the splice-site strength alteration demonstrated that the 5′ splice-site, but not the 3′ splice-site, was required for the SRSF6 regulation of Fas pre-mRNA. In addition, a large-scale RNA-seq analysis using GTEX and TCGA indicated that while SRSF6 expression was correlated with Fas expression in normal tissues, the correlation was disrupted in tumors. Furthermore, high SRSF6 expression was linked to the high expression of pro-apoptotic and immune activation genes. Therefore, we identified a novel RNA target with 5′ splice-site dependence of SRSF6 in Fas pre-mRNA splicing, and a correlation between SRSF6 and Fas expression
Recommended from our members
Widespread Alternative Splicing Changes in Metastatic Breast Cancer Cells.
Aberrant alternative splicing (AS) is a hallmark of cancer and a potential target for novel anti-cancer therapeutics. Breast cancer-associated AS events are known to be linked to disease progression, metastasis, and survival of breast cancer patients. To identify altered AS programs occurring in metastatic breast cancer, we perform a global analysis of AS events by using RNA-mediated oligonucleotide annealing, selection, and ligation coupled with next-generation sequencing (RASL-seq). We demonstrate that, relative to low-metastatic, high-metastatic breast cancer cells show different AS choices in genes related to cancer progression. Supporting a global reshape of cancer-related splicing profiles in metastatic breast cancer we found an enrichment of RNA-binding motifs recognized by several splicing regulators, which have aberrant expression levels or activity during breast cancer progression, including SRSF1. Among SRSF1-regulated targets we found DCUN1D5, a gene for which skipping of exon 4 in its pre-mRNA introduces a premature termination codon (PTC), thus generating an unstable transcript degraded by nonsense-mediated mRNA decay (NMD). Significantly, distinct breast cancer subtypes show different DCUN1D5 isoform ratios with metastatic breast cancer expressing the highest level of the NMD-insensitive DCUN1D5 mRNA, thus showing high DCUN1D5 expression levels, which are ultimately associated with poor overall and relapse-free survival in breast cancer patients. Collectively, our results reveal global AS features of metastatic breast tumors, which open new possibilities for the treatment of these aggressive tumor types
Widespread Alternative Splicing Changes in Metastatic Breast Cancer Cells
Aberrant alternative splicing (AS) is a hallmark of cancer and a potential target for novel anti-cancer therapeutics. Breast cancer-associated AS events are known to be linked to disease progression, metastasis, and survival of breast cancer patients. To identify altered AS programs occurring in metastatic breast cancer, we perform a global analysis of AS events by using RNA-mediated oligonucleotide annealing, selection, and ligation coupled with next-generation sequencing (RASL-seq). We demonstrate that, relative to low-metastatic, high-metastatic breast cancer cells show different AS choices in genes related to cancer progression. Supporting a global reshape of cancer-related splicing profiles in metastatic breast cancer we found an enrichment of RNA-binding motifs recognized by several splicing regulators, which have aberrant expression levels or activity during breast cancer progression, including SRSF1. Among SRSF1-regulated targets we found DCUN1D5, a gene for which skipping of exon 4 in its pre-mRNA introduces a premature termination codon (PTC), thus generating an unstable transcript degraded by nonsense-mediated mRNA decay (NMD). Significantly, distinct breast cancer subtypes show different DCUN1D5 isoform ratios with metastatic breast cancer expressing the highest level of the NMD-insensitive DCUN1D5 mRNA, thus showing high DCUN1D5 expression levels, which are ultimately associated with poor overall and relapse-free survival in breast cancer patients. Collectively, our results reveal global AS features of metastatic breast tumors, which open new possibilities for the treatment of these aggressive tumor types
Recommended from our members
Widespread Alternative Splicing Changes in Metastatic Breast Cancer Cells.
Aberrant alternative splicing (AS) is a hallmark of cancer and a potential target for novel anti-cancer therapeutics. Breast cancer-associated AS events are known to be linked to disease progression, metastasis, and survival of breast cancer patients. To identify altered AS programs occurring in metastatic breast cancer, we perform a global analysis of AS events by using RNA-mediated oligonucleotide annealing, selection, and ligation coupled with next-generation sequencing (RASL-seq). We demonstrate that, relative to low-metastatic, high-metastatic breast cancer cells show different AS choices in genes related to cancer progression. Supporting a global reshape of cancer-related splicing profiles in metastatic breast cancer we found an enrichment of RNA-binding motifs recognized by several splicing regulators, which have aberrant expression levels or activity during breast cancer progression, including SRSF1. Among SRSF1-regulated targets we found DCUN1D5, a gene for which skipping of exon 4 in its pre-mRNA introduces a premature termination codon (PTC), thus generating an unstable transcript degraded by nonsense-mediated mRNA decay (NMD). Significantly, distinct breast cancer subtypes show different DCUN1D5 isoform ratios with metastatic breast cancer expressing the highest level of the NMD-insensitive DCUN1D5 mRNA, thus showing high DCUN1D5 expression levels, which are ultimately associated with poor overall and relapse-free survival in breast cancer patients. Collectively, our results reveal global AS features of metastatic breast tumors, which open new possibilities for the treatment of these aggressive tumor types
SRSF9 Regulates Cassette Exon Splicing of Caspase-2 by Interacting with Its Downstream Exon
Alternative splicing (AS) is an important posttranscriptional regulatory process. Damaged or unnecessary cells need to be removed though apoptosis to maintain physiological processes. Caspase-2 pre-mRNA produces pro-apoptotic long mRNA and anti-apoptotic short mRNA isoforms through AS. How AS of Caspase-2 is regulated remains unclear. In the present study, we identified a novel regulatory protein SRSF9 for AS of Caspase-2 cassette exon 9. Knock-down (KD) of SRSF9 increased inclusion of cassette exon and on the other hand, overexpression of SRSF9 decreased inclusion of this exon. Deletion mutagenesis demonstrated that exon 9, parts of intron 9, exon 8 and exon 10 were not required for the role of SRSF9 in Caspase-2 AS. However, deletion and substitution mutation analysis revealed that AGGAG sequence located at exon 10 provided functional target for SRSF9. In addition, RNA-pulldown mediated immunoblotting analysis showed that SRSF9 interacted with this sequence. Gene ontology analysis of RNA-seq from SRSF9 KD cells demonstrates that SRSF9 could regulate AS of a subset of apoptosis related genes. Collectively, our results reveal a basis for regulation of Caspase-2 AS