20 research outputs found

    Slip history of the 2003 San Simeon earthquake constrained by combining 1-Hz GPS, strong motion, and teleseismic data

    Get PDF
    The slip history of the 2003 San Simeon earthquake is constrained by combining strong motion and teleseismic data, along with GPS static offsets and 1-Hz GPS observations. Comparisons of a 1-Hz GPS time series and a co-located strong motion data are in very good agreement, demonstrating a new application of GPS. The inversion results for this event indicate that the rupture initiated at a depth of 8.5 km and propagated southeastwards with a speed ~3.0 km/sec, with rake vectors forming a fan structure around the hypocenter. We obtained a peak slip of 2.8 m and total seismic moment of 6.2 × 10^(18) Nm. We interpret the slip distribution as indicating that the hanging wall rotates relative to the footwall around the hypocenter, in a sense that appears consistent with the shape of the mapped fault trace

    Comparison of volatile organic compounds between cigarette smoke condensate (CSC) and extract (CSE) samples

    Get PDF
    Cigarette smoke is a major risk factor for several diseases, including chronic obstructive pulmonary and cardiovascular diseases. The toxicity of the cigarette smoke can be determined in vitro. The cytotoxicity test of the cigarette smoke is commonly conducted using the cigarette smoke condensate (CSC) and cigarette smoke extract (CSE). The CSC and CSE methods are well known for sampling of the particles and water-soluble compounds in the cigarette smoke, respectively. In this study, the CSC and CSE were analyzed by using a gas chromatography-mass spectrometry (GC-MS) system equipped with a wax column for separation of the volatile organic compounds. The cytotoxic effect of the CSC and CSE were evaluated thoroughly by comparing the analytical results of the CSC and CSE samples. The total concentration of the volatile organic compounds detected in the CSC sample was similar to that in the CSE sample based on the peak area. Except for the dimethyl sulfoxide solvent, nicotine had the highest concentration in the CSC sample, while acetonitrile had the highest concentration in the CSE sample. The compositions were as follows: (1) CSC sample: 55.8% nicotine, 18.0% nicotyrine, 3.20% 1,2,3-propanetriol, triacetate, 1.28% ethyl chloride, 1.22% phenol, etc. and (2) CSE sample: 18.7% acetonitrile, 18.0% acetone, 12.5% 2-hydroxy-2-methyl-propanenitrile, 8.98% nicotine, 5.86% nicotyrine, etc. In this manner, to accurately examine the cytotoxicity of the cigarette smoke using CSC or CSE, the components and their concentrations in the CSC and CSE samples should be considered

    High-Precision Modal Decomposition of Laser Beams Based on Globally Optimized SPGD Algorithm

    No full text

    Optimization of General Matrix Multiply Library for Ternary Weight for Fast DNN Inference

    No full text
    Efficient implementation of deep neural networks (DNNs) on CPU-based systems is critical owing to the proliferation of applications in embedded and Internet of Things systems. Nowdays, most CPUs are equipped with single instruction multiple data (SIMD) instructions, which are used to implement an efficient general matrix multiply (GEMM) library for accelerating DNN inference. Quantized neural networks are actively investigated to simplify DNN computation and memory requirements; however, the current CPU libraries do not efficiently support arithmetic operations below eight bits. Hence, we developed TernGEMM, a GEMM library composed of SIMD instructions for DNNs with ternary weights and sub-8-bit activations. TernGEMM is implemented using simple logical operations that replace the long-latency multiply-add operation. Instead of fixing the accumulation bit precision as 32-bit, TernGEMM accumulates the partial sums in a bit-incremental manner to exploit parallelism in 8-bit and 16-bit SIMD instructions. Furthermore, we propose different tile sizes for TernGEMM to better support the diverse dimensions of DNNs. Compared with a state-of-the-art reduced precision DNN GEMM library, i.e., GEMMLowp, TernGEMM achieve x1.785 to x4.147 speedup for ResNet50, MobileNet-V2, and EfficientNet-B0, as evaluated on both Intel and ARM CPUs.N

    Quantitative Characteristics of Toxic Compounds According to the Solvent Type

    No full text
    The quantitative analysis of target substances is an important part of assessing the toxicity of diverse materials. Usually, the quantitation of target compounds is conducted by instrumental analysis such as chromatography and capillary electrophoresis. If solvents are used in the pretreatment step of the target analyte quantification, it would be crucial to examine the solvent effect on the quantitative analysis. Therefore, in this study, we assessed the solvent effects using four different solvents (methanol, hexane, phosphate buffered saline (PBS), and dimethyl sulfoxide (DMSO)) and three toxic compounds (benzene, toluene, and methylisothiazolinone (MIT)). Liquid working standards containing the toxic compounds were prepared by dilution with each solvent and analyzed by gas chromatography-mass spectrometry (GC-MS). As a result, we found that the response factor (RF) values of the target analytes were different, depending on the solvent types. In particular, benzene and toluene exhibited their highest RF values (33,674 ng−1 and 78,604 ng−1, respectively) in hexane, while the RF value of MIT was the highest (9,067 ng−1) in PBS. Considering the correlation (R2) and relative standard deviation (RSD) values, all target analytes showed fairly good values (R2 > 0.99 and RSD < 10%) in methanol and DMSO. In contrast, low R2 (0.0562) and high RSD (10.6%) values of MIT were detected in hexane, while benzene and toluene exhibited relatively low R2 and high RSD values in PBS (mean R2 = 0.9892 ± 0.0146 and mean RSD = 13.3 ± 4.1%). Based on these findings, we concluded that the results and reliability of the quantitative analysis change depending on the analyte and solvent types. Therefore, in order to accurately assess the toxicity of target compounds, reliable analytical data should be obtained, preferentially by considering the solvent types

    Comparative evaluation of the mutagenicity and genotoxicity of smoke condensate derived from Korean cigarettes

    No full text
    Objectives Cigarette smoking is associated with carcinogenesis owing to the mutagenic and genotoxic effects of cigarette smoke. The aim of this study was to evaluate the mutagenic and genotoxic effects of Korean cigarettes using in vitro assays. Methods We selected 2 types of cigarettes (TL and TW) as benchmark Korean cigarettes for this study, because they represent the greatest level of nicotine and tar contents among Korean cigarettes. Mutagenic potency was expressed as the number of revertants per μg of cigarette smoke condensate (CSC) total particulate matter whereas genotoxic potency was expressed as a concentration-dependent induction factor. The CSC was prepared by the International Organization for Standardization 3308 smoking method. CHO-K1 cells were used in vitro micronucleus (MNvit) and comet assays. Two strains of Salmonella typhimurium (Salmonella enterica subsp.enterica; TA98 and TA1537) were employed in Ames tests. Results All CSCs showed mutagenicity in the TA98 and TA1537 strains. In addition, DNA damage and micronuclei formation were observed in the comet and MNvit assays owing to CSC exposure. The CSC from the 3R4F Kentucky reference (3R4F) cigarette produced the most severe mutagenic and genotoxic potencies, followed by the CSC from the TL cigarette, whereas the CSC from the TW cigarette produced the least severe mutagenic and genotoxic potencies. Conclusions The results of this study suggest that the mutagenic and genotoxic potencies of the TL and TW cigarettes were weaker than those of the 3R4F cigarette. Further study on standardized concepts of toxic equivalents for cigarettes needs to be conducted for more extensive use of in vitro tests

    Cigarette Smoke Extract Produces Superoxide in Aqueous Media by Reacting with Bicarbonate

    No full text
    The toxicity of cigarette smoke (CS) is largely attributed to its ability to generate reactive oxygen species (ROS). Reportedly, CS generates superoxide in cell culture systems by stimulating the cells to produce superoxide and through direct chemical reactions with components of the culture media. In this study, we investigated CS-induced superoxide formation in biocompatible aqueous media and its characteristics. Cigarette smoke extract (CSE) and total particulate matter (TPM) were prepared from the mainstream smoke of 3R4F reference cigarettes. CSE and TPM generated superoxide in Hank’s balanced salt solution (HBSS), Dulbecco’s modified Eagle media (DMEM), and blood plasma, but not in distilled water and phosphate-buffered saline. Each constituent of HBSS in solution was tested, and bicarbonate was found to be responsible for the superoxide generation. More than half of the superoxide formation was abolished by pretreating CSE or TPM with peroxidase, indicating that the substrates of peroxidase, presumably peroxides and peroxy acids, mainly contributed to the superoxide production. In conclusion, the presence of bicarbonate in experimental conditions should be considered carefully in studies of the biological activity of CS. Furthermore, the local amount of bicarbonate in exposed tissues may be a determinant of tissue sensitivity to oxidative damage by CS

    Cigarette Smoke Extract Produces Superoxide in Aqueous Media by Reacting with Bicarbonate

    No full text
    The toxicity of cigarette smoke (CS) is largely attributed to its ability to generate reactive oxygen species (ROS). Reportedly, CS generates superoxide in cell culture systems by stimulating the cells to produce superoxide and through direct chemical reactions with components of the culture media. In this study, we investigated CS-induced superoxide formation in biocompatible aqueous media and its characteristics. Cigarette smoke extract (CSE) and total particulate matter (TPM) were prepared from the mainstream smoke of 3R4F reference cigarettes. CSE and TPM generated superoxide in Hank&rsquo;s balanced salt solution (HBSS), Dulbecco&rsquo;s modified Eagle media (DMEM), and blood plasma, but not in distilled water and phosphate-buffered saline. Each constituent of HBSS in solution was tested, and bicarbonate was found to be responsible for the superoxide generation. More than half of the superoxide formation was abolished by pretreating CSE or TPM with peroxidase, indicating that the substrates of peroxidase, presumably peroxides and peroxy acids, mainly contributed to the superoxide production. In conclusion, the presence of bicarbonate in experimental conditions should be considered carefully in studies of the biological activity of CS. Furthermore, the local amount of bicarbonate in exposed tissues may be a determinant of tissue sensitivity to oxidative damage by CS

    Oxidative Stress Induced by Cigarette Smoke Extracts in Human Brain Cells (T98G) and Human Brain Microvascular Endothelial Cells (HBMEC) in Mono- and Co-Culture

    No full text
    The objective of the current study was to examine oxidative stress induced by cigarette smoke extract (CSE) or cigarette smoke condensate (CSC) in human brain cells (T98G) and human brain microvascular endothelial cells (HBMEC) in mono- and co-culture systems. Cell viability of T98G cells exposed to CSC (0.05-4 mg/ml) was significantly decreased compared to CSE (0.025-20%). There were no marked differences between quantities of reactive oxygen species (ROS) generation by either CSE (2, 4, and 10%) or CSC (0.2, 0.4, and 0.8 mg/ml) treatment compared to control. However, a significant effect was noted in ROS generation following CSC incubation at 4mg/ml. Cellular integrity of HBMEC decreased to 74 and 64% within 120 h of exposure at the IC50 value of CSE and CSC, respectively. This study suggests that chronic exposure to cigarette smoking might initiate damage to the blood-brain barrier
    corecore