75,400 research outputs found
Constituent quark model for nuclear stopping in high energy nuclear collisions
We study the nuclear stopping in high energy nuclear collisions using the
constituent quark model. It is assumed that wounded nucleons with different
number of interacted quarks hadronize in different ways. The probabilities of
having such wounded nucleons are evaluated for proton-proton, proton-nucleus
and nucleus-nucleus collisions. After examining our model in proton-proton and
proton-nucleus collisions and fixing the hadronization functions, it is
extended to nucleus-nucleus collisions. It is used to calculate the rapidity
distribution and the rapidity shift of final state protons in nucleus-nucleus
collisions. The computed results are in good agreement with the experimental
data on ^{32}\mbox{S} +\ ^{32}\mbox{S} at AGeV and
^{208}\mbox{Pb} +\ ^{208}\mbox{Pb} at AGeV. Theoretical
predictions are also given for proton rapidity distribution in ^{197}\mbox{Au}
+\ ^{197}\mbox{Au} at AGeV (BNL-RHIC). We predict that the
nearly baryon free region will appear in the midrapidity region and the
rapidity shift is .Comment: 40 pages, 16 Postscript figures, submitted to Phys. Rev.
Control of critical coupling in a ring resonator fiber configuration: application to wavelength-selective switching, modulation, amplification, and oscillation
By controlling the internal loss of a ring resonator near critical coupling, we demonstrate control of the transmitted power in a fiber that is coupled to the resonator. We also demonstrate wavelength-selective optical amplification and oscillation
Sparticle masses in deflected mirage mediation
We discuss the sparticle mass patterns that can be realized in deflected
mirage mediation scenario of supersymmetry breaking, in which the moduli,
anomaly, and gauge mediations all contribute to the MSSM soft parameters.
Analytic expression of low energy soft parameters and also the sfermion mass
sum rules are derived, which can be used to interpret the experimentally
measured sparticle masses within the framework of the most general mixed
moduli-gauge-anomaly mediation. Phenomenological aspects of some specific
examples are also discussed.Comment: 43 pages, 17 figures, references adde
The Gaugino Code
Gauginos might play a crucial role in the search for supersymmetry at the
Large Hadron Collider (LHC). Mass predictions for gauginos are rather robust
and often related to the values of the gauge couplings. We analyse the ratios
of gaugino masses in the LHC energy range for various schemes of supersymmetry
breakdown and mediation. Three distinct mass patterns emerge.Comment: 42 pages, Latex; a discussion of deflected anomaly mediation added,
references adde
Two-Electron Linear Intersubband Light Absorption in a Biased Quantum Well
We point out a novel manifestation of many-body correlations in the linear
optical response of electrons confined in a quantum well. Namely, we
demonstrate that along with conventional absorption peak at frequency close to
intersubband energy, there exists an additional peak at double frequency. This
new peak is solely due to electron-electron interactions, and can be understood
as excitation of two electrons by a single photon. The actual peak lineshape is
comprised of a sharp feature, due to excitation of pairs of intersubband
plasmons, on top of a broader band due to absorption by two single-particle
excitations. The two-plasmon contribution allows to infer intersubband plasmon
dispersion from linear absorption experiments.Comment: 4 pages, 3 figures; published versio
A method to find quantum noiseless subsystems
We develop a structure theory for decoherence-free subspaces and noiseless
subsystems that applies to arbitrary (not necessarily unital) quantum
operations. The theory can be alternatively phrased in terms of the
superoperator perspective, or the algebraic noise commutant formalism. As an
application, we propose a method for finding all such subspaces and subsystems
for arbitrary quantum operations. We suggest that this work brings the
fundamental passive technique for error correction in quantum computing an
important step closer to practical realization.Comment: 5 pages, to appear in Physical Review Letter
Affine maps of density matrices
For quantum systems described by finite matrices, linear and affine maps of
matrices are shown to provide equivalent descriptions of evolution of density
matrices for a subsystem caused by unitary Hamiltonian evolution in a larger
system; an affine map can be replaced by a linear map, and a linear map can be
replaced by an affine map. There may be significant advantage in using an
affine map. The linear map is generally not completely positive, but the linear
part of an equivalent affine map can be chosen to be completely positive and
related in the simplest possible way to the unitary Hamiltonian evolution in
the larger system.Comment: 4 pages, title changed, sentence added, reference update
Current responses and voltage fluctuations in Josephson-junction systems
We consider arrays of Josephson junctions as well as single junctions in both
the classical and quantum-mechanical regimes, and examine the generalized
(frequency-dependent) resistance, which describes the dynamic responses of such
Josephson-junction systems to external currents. It is shown that the
generalized resistance and the power spectrum of voltage fluctuations are
related via the fluctuation-dissipation theorem. Implications of the obtained
relations are also discussed in various experimental situations.Comment: 4 pages, To appear in Europhys. Let
- …