3,341 research outputs found

    Parameter Conditions for Global Stability of FAST TCP

    Get PDF
    In this letter, we study the global asymptotic stability of FAST TCP in the presence of network feedback delays. Based on a continuous-time dynamic model of FAST TCP and a static approximation of queuing delay at the link, we derive stability conditions for FAST TCP. The derived conditions are explicitly appeared as tuning parameter conditions of FAST TCP, and hence can be satisfied in a distributed way. The simulation results illustrate the validity of the conditions for the global asymptotic stability

    Parameter Conditions for Global Stability of FAST TCP

    Full text link

    Origins of anomalous electronic structures of epitaxial graphene on silicon carbide

    Full text link
    On the basis of first-principles calculations, we report that a novel interfacial atomic structure occurs between graphene and the surface of silicon carbide, destroying the Dirac point of graphene and opening a substantial energy gap there. In the calculated atomic structures, a quasi-periodic 6×66\times 6 domain pattern emerges out of a larger commensurate 63×63R306\sqrt{3}\times6\sqrt{3}R30^\circ periodic interfacial reconstruction, resolving a long standing experimental controversy on the periodicity of the interfacial superstructures. Our theoretical energy spectrum shows a gap and midgap states at the Dirac point of graphene, which are in excellent agreement with the recently-observed anomalous angle-resolved photoemission spectra. Beyond solving unexplained issues of epitaxial graphene, our atomistic study may provide a way to engineer the energy gaps of graphene on substrates.Comment: Additional references added; published version; 4 pages, 4 figure

    Nanotechnology for Early Cancer Detection

    Get PDF
    Vast numbers of studies and developments in the nanotechnology area have been conducted and many nanomaterials have been utilized to detect cancers at early stages. Nanomaterials have unique physical, optical and electrical properties that have proven to be very useful in sensing. Quantum dots, gold nanoparticles, magnetic nanoparticles, carbon nanotubes, gold nanowires and many other materials have been developed over the years, alongside the discovery of a wide range of biomarkers to lower the detection limit of cancer biomarkers. Proteins, antibody fragments, DNA fragments, and RNA fragments are the base of cancer biomarkers and have been used as targets in cancer detection and monitoring. It is highly anticipated that in the near future, we might be able to detect cancer at a very early stage, providing a much higher chance of treatment
    corecore