926 research outputs found

    Acute dystonia by droperidol during intravenous patient-controlled analgesia in young patients.

    Get PDF
    Patient-controlled analgesia (PCA) is an important means for postoperative analgesia with parenteral opioid. However, postoperative nausea and vomiting (PONV) remains a major problem with a PCA system. Droperidol is used in PCA to prevent PONV. Extrapyramidal reactions by droperidol are, however, occasionally induced. We describe two cases of severe extrapyramidal hypertonic syndrome with an intravenous administration of droperidol in PCA in young patients, following orthopedic surgery

    Indentation of plastically graded materials

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2007.Includes bibliographical references (p. 115-126).The introduction of certain controlled gradients in plastic properties is known to promote resistance to the onset of damage at contact surfaces during some tribological applications. Gradients in composition, microstructure and plastic properties can also be deleterious to contact-damage resistance in some situations. In order to realize such potentially beneficial or deleterious effects of plastic property gradients in tribological applications, it is essential first to develop a comprehensive understanding of the effects of yield strength and strain hardening exponent on frictionless normal indentation. To date, however, systematic studies of plasticity gradient effects on indentation response have not been completed. A comprehensive parametric study of the mechanics of indentation of plastically graded materials is completed in this work by recourse to finite element (FE) computations. On the basis of a large number of detailed computational simulations, a general methodology for assessing instrumented indentation response of plastically graded materials is formulated so that quantitative interpretations of depth-sensing indentation experiments could be performed. The specific case of linear gradient in yield strength is explored in detail.(cont.) The FE analysis leads to a universal dimensionless function to predict load displacement curves for plastically graded engineering materials. Experimental validation of the analysis is performed by choosing the model system of an electrodeposited nanostructured Ni-W alloy, where the plastic property variation is introduced through a linear variation in grain size with distance through the thickness. The universal dimensionless function is shown to correlate with the shield factor which is used to predict crack behavior at the interface of plastically graded materials. Here in this work a general framework is proposed for the indentation of plastically graded materials based on energetic considerations. Possible mechanisms underlying indentation size effects are also explored including the surface energy terms in the proposed energy based framework so as to rationalize a broad range of experimental observations. Practical implications of the present work are highlighted.by In-Suk Choi.Ph.D

    E-beam-enhanced solid-state mechanical amorphization of alpha-quartz: Reducing deformation barrier via localized excess electrons as mobile anions

    Full text link
    Under hydrostatic pressure, alpha-quartz undergoes solid-state mechanical amorphization wherein the interpenetration of SiO4 tetrahedra occurs and the material loses crystallinity. This phase transformation requires a high hydrostatic pressure of 14 GPa because the repulsive forces resulting from the ionic nature of the Si-O bonds prevent the severe distortion of the atomic configuration. Herein, we experimentally and computationally demonstrate that e-beam irradiation changes the nature of the interatomic bonds in alpha-quartz and enhances the solid-state mechanical amorphization at nanoscale. Specifically, during in situ uniaxial compression, a larger permanent deformation occurs in alpha-quartz micropillars compressed during e-beam irradiation than in those without e-beam irradiation. Microstructural analysis reveals that the large permanent deformation under e-beam irradiation originates from the enhanced mechanical amorphization of alpha-quartz and the subsequent viscoplastic deformation of the amorphized region. Further, atomic-scale simulations suggest that the delocalized excess electrons introduced by e-beam irradiation move to highly distorted atomic configurations and alleviate the repulsive force, thus reducing the barrier to the solid-state mechanical amorphization. These findings deepen our understanding of electron-matter interactions and can be extended to new glass forming and processing technologies at nano- and microscale.Comment: 24 pages, 6 figure

    Newly developed post-operative atrial fibrillation is associated with an increased risk of late recurrence of atrial fibrillation in patients who underwent open heart surgery: Long-term follow up

    Get PDF
    Background: Herein is sought to determine whether the occurrence of post-operative atrial fibrillation (POAF) increases the risk of late recurrence of atrial fibrillation (AF) in patients undergoing open heart surgery (OHS). Methods: This study included 938 patients (56.7 ± 13.1 years old, 550 males) with no history of AF who underwent OHS. All patients were monitored continuously for development of POAF after surgery until the time of hospital discharge and received clinical follow up with serial evaluation of rhythm status. Results: Among the total population, POAF occurred in 207 (22.1%) patients and late AF in 88 (9.4%) patients during the mean follow up period of 78.1 ± 39.1 months. Development of late AF oc¬curred more frequently in patients with POAF than in those without [29.0% (60/207) vs. 3.8% (28/731), p < 0.01]. Higher septal E/e’ ratio (HR 1.04, 95% CI 1.00–1.08, p = 0.04) was an independent predic¬tor of late occurrence of AF and an episode of POAF (HR 27.12, 95% CI 8.46–86.96, p < 0.01) was the most powerful predictor. Conclusions: POAF is significantly associated with an increased risk of late AF recurrence during long-term follow up. Careful concern regarding late recurrence of AF with serial evaluation of rhythm status is required in patients with POAF

    EFFECTS OF 10 WEEKS TRAINING PROGRAM ON LOWER EXTREMITY STRENGTH AND VERTICAL REACTION FORCE DURING SIT-TO-STAND IN CHRONIC STROKE PATIENTS

    Get PDF
    The purpose of this study was to investigate the effects of 10 weeks training program on lower extremity strength and' vertical reaction force during sit-to-stand movement in chronic stroke patients. Maximum vertical ground reaction force, difference of vertical ground reaction force between left and right foot, COP in anteriorposterior and mediolateral direction did not show any significant time main effect. However, the difference of body weight distribution between the left and right foot was decreased in experimental group after training. The peak torque generated by the flexors of the paretic limb at 60o /sec and 180o/sec in experimental group changed from baseline, an increases of 30.23% and 24.09%, respectively. These results appear that 10 weeks training program improves sit-to-stand movement and lower extremity strength in chronic stroke patients

    Calcium-binding Protein Calretinin Immunoreactivity in the Dog Superior Colliculus

    Get PDF
    We studied calretinin-immunoreactive (IR) fibers and cells in the canine superior colliculus (SC) and studied the distribution and effect of enucleation on the distribution of this protein. Localization of calretinin was immunocytochemically observed. A dense plexus of anti-­calretinin-IR fibers was found within the upper part of the superficial gray layer (SGL). Almost all of the labeled fibers were small in diameter with few varicosities. The intermediate and deep layers contained many calretinin-IR neurons. Labeled neurons within the intermediate gray layer (IGL) formed clusters in many sections. By contrast, labeled neurons in the deep gray layer (DGL) did not form clusters. Calretinin-IR neurons in the IGL and DGL varied in morphology and included round/oval, vertical fusiform, stellate, and horizontal neurons. Neurons with varicose dendrites were also labeled in the IGL. Most of the labeled neurons were small to medium in size. Monocular enucleation produced an almost complete reduction of calretinin-IR fibers in the SC contralateral to the enucleation. However, many calretinin-IR cells appeared in the contralateral superficial SC. Enucleation appeared to have no effect on the distribution of calretinin-IR neurons in the contralateral intermediate and deep layers of the SC. The calretinin-IR neurons in the superficial dog SC were heterogeneous small- to medium-sized neurons including round/oval, vertical fusiform, stellate, pyriform, and ­horizontal in shape. Two-color immunofluorescence revealed that no cells in the dog SC ­expressed both calretinin and GABA. Many horseradish peroxidase (HRP)-labeled retinal ganglion cells were seen after injections into the superficial layers. The vast majority of the double-labeled cells (HRP and calretinin) were small cells. The present results indicate that antibody to calretinin labels subpopulations of neurons in the dog SC, which do not express GABA. The results also suggest that the calretinin-IR afferents in the superficial layers of the dog SC originate from small class retinal ganglion cells. The expression of calretinin might be changed by the cellular activity of selective superficial collicular neurons. These results are valuable in delineating the basic neurochemical architecture of the dog visual system
    • …
    corecore