35 research outputs found

    Lack of evidence for involvement of TonEBP and hyperosmotic stimulus in induction of autophagy in the nucleus pulposus.

    Get PDF
    Nucleus pulposus (NP) cells reside in a physiologically hyperosmotic environment within the intervertebral disc. TonEBP/NFAT5 is an osmo-sensitive transcription factor that controls expression of genes critical for cell survival under hyperosmotic conditions. A recent report on NP and studies of other cell types have shown that hyperosmolarity triggers autophagy. However, little is known whether such autophagy induction occurs through TonEBP. The goal of this study was to investigate the role of TonEBP in hyperosmolarity-dependent autophagy in NP. Loss-of-function studies showed that autophagy in NP cells was not TonEBP-dependent; hyperosmolarity did not upregulate autophagy as previously reported. NP tissue of haploinsufficient TonEBP mice showed normal pattern of LC3 staining. NP cells did not increase LC3-II or LC3-positive puncta under hyperosmotic conditions. Bafilomycin-A1 treatment and tandem mCherry-EGFP-LC3B reporter transfection demonstrated that the autophagic flux was unaffected by hyperosmolarity. Even under serum-free conditions, NP cells did not induce autophagy with increasing osmolarity. Hyperosmolarity did not change the phosphorylation of ULK1 by mTOR and AMPK. An ex vivo disc organ culture study supported that extracellular hyperosmolarity plays no role in promoting autophagy in the NP. We conclude that hyperosmolarity does not play a role in autophagy induction in NP cells

    Understanding nucleus pulposus cell phenotype: a prerequisite for stem cell based therapies to treat intervertebral disc degeneration.

    Get PDF
    Intervertebral disc (IVD) degeneration and associated low back pain (LBP) remains a major burden to our society without significant improvements in treatment strategies or patient\u27s quality of life. While the recent cell-transplantation studies for treatment of degenerative disc disease have shown promising results, to better gauge the success and functional outcomes of these therapies, it is crucial to understand if transplanted cells give rise to healthy nucleus pulposus (NP) tissue. NP cell phenotype is unique and is defined by expression of a characteristic set of markers that reflect specialized physiology and function. This review summarizes phenotypic markers that mirror the unique physiology and function of NP cells and their progenitors and should be considered to when measuring outcomes of cell-based therapies to treat disc degeneration

    Spot Urine Uric Acid to Creatinine Ratio used in the Estimation of Hyperuricosuria in the Young Korean Population

    Get PDF
    Background Uric acid levels in urine are measured using urine specimens 24 hours or by uric acid glomerular filtration rate (UAGFR) with spot urine, which additionally requires a blood sample. This study aimed to investigate whether urinary uric acid creatinine ratio (UUACr) obtained by spot urine alone could be recognized as a substitute for UAGFR value, and hyperuricosuria can be screened by UUACr. UUACr is known to vary with age and regional differences. This study focused on the reference value of each value in Korean young populations. Method We enrolled Korean subjects 1–20 years with normal kidney function, from a single hospital, classified into 5 age groups, 1–5 years, 6–8 years, 9–12 years, 13–15 years, and 16–20 years. We checked spot urine uric acid, creatinine and serum uric acid, creatinine levels on the same day from February 2014 to December 2018. We measured the average of UAGFR and UUACr in each groups. The UUACr cut-off value of the upper 2 standard deviation (SD) of UAGFR were taken. Results The upper 2 SD of UUACr (mg/mg) and UAGFR (mg/dL) were determined in all age groups. UUACr decreased with grown up (P=0.000), but UAGFR were not statistically different among the groups. UUACr and UAGFR were not significantly different by gender. UUACr and UAGFR were positively correlated; UUACr cut-off value of upper 2 SD UAGFR (0.54 mg/dL) was 0.65 mg/mg in total age. Conclusions UUACr could potentially be used to screen for hyperuricosuria

    Polynomial-based Self-Attention for Table Representation learning

    Full text link
    Structured data, which constitutes a significant portion of existing data types, has been a long-standing research topic in the field of machine learning. Various representation learning methods for tabular data have been proposed, ranging from encoder-decoder structures to Transformers. Among these, Transformer-based methods have achieved state-of-the-art performance not only in tabular data but also in various other fields, including computer vision and natural language processing. However, recent studies have revealed that self-attention, a key component of Transformers, can lead to an oversmoothing issue. We show that Transformers for tabular data also face this problem, and to address the problem, we propose a novel matrix polynomial-based self-attention layer as a substitute for the original self-attention layer, which enhances model scalability. In our experiments with three representative table learning models equipped with our proposed layer, we illustrate that the layer effectively mitigates the oversmoothing problem and enhances the representation performance of the existing methods, outperforming the state-of-the-art table representation methods

    COX-2 expression mediated by calcium-TonEBP signaling axis under hyperosmotic conditions serves osmoprotective function in nucleus pulposus cells.

    Get PDF
    The nucleus pulposus (NP) of intervertebral discs experiences dynamic changes in tissue osmolarity because of diurnal loading of the spine. TonEBP/NFAT5 is a transcription factor that is critical in osmoregulation as well as survival of NP cells in the hyperosmotic milieu. The goal of this study was to investigate whether cyclooxygenase-2 (COX-2) expression is osmoresponsive and dependent on TonEBP, and whether it serves an osmoprotective role. NP cells up-regulated COX-2 expression in hyperosmotic media. The induction of COX-2 depended on elevation of intracellular calcium levels and p38 MAPK pathway, but independent of calcineurin signaling as well as MEK/ERK and JNK pathways. Under hyperosmotic conditions, both COX-2 mRNA stability and its proximal promoter activity were increased. The proximal COX-2 promoter (-1840/+123 bp) contained predicted binding sites for TonEBP, AP-1, NF-κB, and C/EBP-β. While COX-2 promoter activity was positively regulated by both AP-1 and NF-κB, AP-1 had no effect and NF-κB negatively regulated COX-2 protein levels under hyperosmotic conditions. On the other hand, TonEBP was necessary for both COX-2 promoter activity and protein up-regulation in response to hyperosmotic stimuli

    Long-term Time Series Forecasting based on Decomposition and Neural Ordinary Differential Equations

    Full text link
    Long-term time series forecasting (LTSF) is a challenging task that has been investigated in various domains such as finance investment, health care, traffic, and weather forecasting. In recent years, Linear-based LTSF models showed better performance, pointing out the problem of Transformer-based approaches causing temporal information loss. However, Linear-based approach has also limitations that the model is too simple to comprehensively exploit the characteristics of the dataset. To solve these limitations, we propose LTSF-DNODE, which applies a model based on linear ordinary differential equations (ODEs) and a time series decomposition method according to data statistical characteristics. We show that LTSF-DNODE outperforms the baselines on various real-world datasets. In addition, for each dataset, we explore the impacts of regularization in the neural ordinary differential equation (NODE) framework.Comment: Accepted at IEEE BigData 202

    Circadian factors BMAL1 and RORα control HIF-1α transcriptional activity in nucleus pulposus cells: implications in maintenance of intervertebral disc health.

    Get PDF
    BMAL1 and RORα are major regulators of the circadian molecular oscillator. Since previous work in other cell types has shown cross talk between circadian rhythm genes and hypoxic signaling, we investigated the role of BMAL1 and RORα in controlling HIF-1-dependent transcriptional responses in NP cells that exist in the physiologically hypoxic intervertebral disc. HIF-1-dependent HRE reporter activity was further promoted by co-transfection with either BMAL1 or RORα. In addition, stable silencing of BMAL1 or inhibition of RORα activity resulted in decreased HRE activation. Inhibition of RORα also modulated HIF1α-TAD activity. Interestingly, immunoprecipitation studies showed no evidence of BMAL1, CLOCK or RORα binding to HIF-1α in NP cells. Noteworthy, stable silencing of BMAL1 as well as inhibition of RORα decreased expression of select HIF-1 target genes including VEGF, PFKFB3 and Eno1. To delineate if BMAL1 plays a role in maintenance of disc health, we studied the spinal phenotype of BMAL1-null mice. The lumbar discs of null mice evidenced decreased height, and several parameters associated with vertebral trabecular bone quality were also affected in nulls. In addition, null animals showed a higher ratio of cells to matrix in NP tissue and hyperplasia of the annulus fibrosus. Taken together, our results indicate that BMAL1 and RORα form a regulatory loop in the NP and control HIF-1 activity without direct interaction. Importantly, activities of these circadian rhythm molecules may play a role in the adaptation of NP cells to their unique niche

    Nucleus pulposus primary cilia alter their length in response to changes in extracellular osmolarity but do not control TonEBP-mediated osmoregulation.

    Get PDF
    The nucleus pulposus (NP) cells adapt to their physiologically hyperosmotic microenvironment through Tonicity-responsive enhancer binding protein (TonEBP/nuclear factor of activated T-cell5 [NFAT5])-mediated osmoregulation. Primary cilia in different organs serve diverse roles including osmosensing, but its contribution to NP cell osmoadaptive response is unknown. A high percentage of cultured primary NP cells possessed primary cilia that changed length in response to osmotic stimuli. Stable silencing of Intraflagellar Transport 88 (Ift88) or Kinesin Family Member 3 A (Kif3a) to inhibit the formation of primary cilia did not affect hyperosmotic upregulation of TonEBP. While ShKif3a blocked hyperosmotic increase of TonEBP-Transactivation Domain (TAD) activity, overall the knockdown of either gene did not alter the hyperosmotic status of proximal promoter activities and transcription of key TonEBP targets. On the other hand, a small decrease in TonEBP level under hypoosmotic condition was attenuated by Ift88 or Kif3a knockdown. Noteworthy, none of the TonEBP target genes were responsive to hypoosmotic stimulus in control and Ift88 or Kif3a knockdown cells, suggesting the primary role of TonEBP in the hyperosmotic adaptation of NP cells. Similarly, in Kif3a null mouse embryonic fibroblasts (MEFs), the overall TonEBP-dependent hyperosmotic responses were preserved. Unlike NP cells, TonEBP targets were responsive to hypoosmolarity in wild-type MEFs, and these responses remained intact in Kif3a null MEFs. Together, these results suggest that primary cilia are dispensable for TonEBP-dependent osmoadaptive response
    corecore