3,122 research outputs found

    Wavelength-selective silencing of photocurrent in Au-coated C-60 wire hybrid

    Get PDF
    A Au-coated C-60 wire device showed wavelength-selective silencing of photocurrent on illumination with 532 nm light.close6

    Short-term effects of Theracurmin dose and exercise type on pain, walking ability, and muscle function in patients with knee osteoarthritis

    Get PDF
    The purpose of this study was to investigate the short-term of Theracurmin dose and exercise type on pain, walking ability, and muscle function in patients with knee osteoarthritis. Twenty-five patients with knee osteoarthritis randomly selected to Theracurmin intake (T) group and Theracurmin in combined with exercise (T+E) group. T group (n= 13) was taken orally a capsule of 700 mg, 3 times per day, (total 2,100 mg, 35 mg/kg-body weight). T+E group (n= 12) performed aerobic training of 30-min walking and weight training for increasing leg muscular strength. After treatment, the number of steps, muscle mass, range of motion of knee, and the muscle strength in flexion and extension significantly increased. The percent body fat, visual analogue scale, The Western Ontario and McMaster score, centers of pressure with closed eye, 10-m walking ability, stair ascending speed were significantly decreased after treatment. Although no difference observed between the T and T+E groups, the 4-week intake of Theracurmin with and without exercise appeared to be effective in reducing the pain and enhancing muscular and balancing function. Therefore, Theracurmin intake for early symptoms and additional exercise as symptoms alleviate might be an effective way of delaying and managing osteoarthritis, and additional studies investigating the effects of Theracurmin and exercise on osteoarthritis could be beneficial

    Myricetin: A Naturally Occurring Regulator of Metal-Induced Amyloid-β Aggregation and Neurotoxicity

    Full text link
    No AbstractPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/84385/1/1198_ftp.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/84385/2/cbic_201000790_sm_miscellaneous_information.pd

    Strong enhancement of ultraviolet emission from ZnO films by V implantation

    No full text
    ZnOfilms were prepared on Si(100) wafers by rf sputtering and subsequently implanted with V ions to fluences of (1,2.5,5,10)×10¹⁵ cm¯². The room-temperature ultraviolet photoluminescence(PL) intensity of the implantedfilms is shown to increase with increasing fluence up to 2.5×1015 cm−2, becoming ∼37 times more intense than the emission from the unimplanted ZnOfilm, before decreasing at higher fluences. The increase in PL intensity is correlated with improved crystallinity of ZnO, accompanied by a reduction in the concentration of deep-level native defects by V incorporation into the ZnO lattice, as verified by x-ray diffraction, x-ray photoelectron spectroscopy, and low-temperature PL. The subsequent reduction in PL intensity at fluences higher than 2.5×10¹⁵ cm¯² is shown to result from the deterioration of the crystal quality and the precipitation of V secondary phase possibly introducing defects in the films

    N-(2,5-Dimeth­oxy­phen­yl)-N′-(4-hy­droxy­pheneth­yl)urea

    Get PDF
    In the title compound, C17H20N2O4, the 2,5-dimeth­oxy­phenyl unit is almost planar, with an r.m.s. deviation of 0.015 Å. The dihedral angle between the 2,5-dimeth­oxy­phenyl ring and the urea plane is 20.95 (8)°. The H atoms of the urea NH groups are positioned syn to each other. The mol­ecular structure is stabilized by a short intra­molecular N—H⋯O hydrogen bond. In the crystal, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network

    1-[3-(Hy­droxy­meth­yl)phen­yl]-3-phenyl­urea

    Get PDF
    In the title compound, C14H14N2O2, the dihedral angle between the benzene rings is 23.6 (1)°. The H atoms of the urea NH groups are positioned syn to each other. In the crystal, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network

    Generation of high concentration nanobubbles based on friction tubes

    Full text link
    Nanobubble-related technologies have been confirmed to be useful in various fields such as climate change and the environment as well as water-based industries such as water purification, crops, horticulture, medical care, bio, and sterilization. However, a method of mass production in real time enough to apply nano-bubbles to the industry has not yet been developed. We explored the mechanism of nano-bubble water generation by friction between water and walls and developed a tube device applying the shape of the flow path to maximize the friction in the fluid passing through the flow path. It also describes the case of real-time and low-power mass production of nanobubbles and its technical utility. We found that the friction of nanotubes alone can easily and quickly improve the production of nanobubbles with small particle size in real time; by increasing the shearing pressure while increasing the effective friction constant value, the particle size of nanobubbles can be smaller while increasing the particle concentration.Comment: 24 pages, 24 figures, 6 table

    Recent Development of Bifunctional Small Molecules to Study Metal-Amyloid-β Species in Alzheimer's Disease

    Get PDF
    Alzheimer's disease (AD) is a multifactorial neurodegenerative disease related to the deposition of aggregated amyloid-β (Aβ) peptides in the brain. It has been proposed that metal ion dyshomeostasis and miscompartmentalization contribute to AD progression, especially as metal ions (e.g., Cu(II) and Zn(II)) found in Aβ plaques of the diseased brain can bind to Aβ and be linked to aggregation and neurotoxicity. The role of metal ions in AD pathogenesis, however, is uncertain. To accelerate understanding in this area and contribute to therapeutic development, recent efforts to devise suitable chemical reagents that can target metal ions associated with Aβ have been made using rational structure-based design that combines two functions (metal chelation and Aβ interaction) in the same molecule. This paper presents bifunctional compounds developed by two different design strategies (linkage or incorporation) and discusses progress in their applications as chemical tools and/or potential therapeutics

    Effect of (O, As) dual implantation on p-type doping of ZnO films

    No full text
    Optical and electrical characteristics of ZnOfilms co-implanted with O and As ions have been investigated by photoluminescence(PL), Hall-effect, and current-voltage (I-V) measurements. 100-nm-thick ZnOfilms grown on n-type Si (100) wafers by RF sputtering have been implanted with various fluences of 30 keV O and 100 keV As ions at room temperature, and subsequently annealed at 800 °C for 20 min in a N2 ambient. The dually-implanted ZnOfilms show stable p-type characteristics for particular implant combinations, consistent with the observation of dominant PL peaks at 3.328 and 3.357 eV that are associated with the acceptor levels. For these dually-implanted p-type ZnO films/n-type Si diodes, the I-V curves show rectifying p-n junction behavior. Other singly (As)- or dually-implanted samples show n-type or indeterminable doping characteristics. These results suggest that O implantation plays a key role in forming p-type ZnOfilms by reducing the oxygen vacancy concentration and facilitating the formation of As-related acceptors in ZnO.This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2011-0017373)
    corecore