6 research outputs found

    FDLS: A Deep Learning Approach to Production Quality, Controllable, and Retargetable Facial Performances

    Full text link
    Visual effects commonly requires both the creation of realistic synthetic humans as well as retargeting actors' performances to humanoid characters such as aliens and monsters. Achieving the expressive performances demanded in entertainment requires manipulating complex models with hundreds of parameters. Full creative control requires the freedom to make edits at any stage of the production, which prohibits the use of a fully automatic ``black box'' solution with uninterpretable parameters. On the other hand, producing realistic animation with these sophisticated models is difficult and laborious. This paper describes FDLS (Facial Deep Learning Solver), which is Weta Digital's solution to these challenges. FDLS adopts a coarse-to-fine and human-in-the-loop strategy, allowing a solved performance to be verified and edited at several stages in the solving process. To train FDLS, we first transform the raw motion-captured data into robust graph features. Secondly, based on the observation that the artists typically finalize the jaw pass animation before proceeding to finer detail, we solve for the jaw motion first and predict fine expressions with region-based networks conditioned on the jaw position. Finally, artists can optionally invoke a non-linear finetuning process on top of the FDLS solution to follow the motion-captured virtual markers as closely as possible. FDLS supports editing if needed to improve the results of the deep learning solution and it can handle small daily changes in the actor's face shape. FDLS permits reliable and production-quality performance solving with minimal training and little or no manual effort in many cases, while also allowing the solve to be guided and edited in unusual and difficult cases. The system has been under development for several years and has been used in major movies.Comment: DigiPro '22: The Digital Production Symposiu

    Data-driven control of flapping flight

    No full text

    Intermediate cells of in vitro cellular reprogramming and in vivo tissue regeneration require desmoplakin

    No full text
    Amphibians and fish show considerable regeneration potential via dedifferentiation of somatic cells into blastemal cells. In terms of dedifferentiation, in vitro cellular reprogramming has been proposed to share common processes with in vivo tissue regeneration, although the details are elusive. Here, we identified the cytoskeletal linker protein desmoplakin (Dsp) as a common factor mediating both reprogramming and regeneration. Our analysis revealed that Dsp expression is elevated in distinct intermediate cells during in vitro reprogramming. Knockdown of Dsp impedes in vitro reprogramming into induced pluripotent stem cells and induced neural stem/progenitor cells as well as in vivo regeneration of zebrafish fins. Notably, reduced Dsp expression impairs formation of the intermediate cells during cellular reprogramming and tissue regeneration. These findings suggest that there is a Dsp-mediated evolutionary link between cellular reprogramming in mammals and tissue regeneration in lower vertebrates and that the intermediate cells may provide alternative approaches for mammalian regenerative therapy.11Nsciescopu
    corecore