3,577 research outputs found

    A mathematical characterization of vegetation effect on microwave remote sensing from the Earth

    Get PDF
    In passive microwave remote sensing of the earth, a theoretical model that utilizes the radiative transfer equations was developed to account for the volume scattering effects of the vegetation canopy. Vegetation canopies such as alfalfa, sorghum, and corn are simulated by a layer of ellipsoidal scatterers and cylindrical structures. The ellipsoidal scatterers represent the leaves of vegetation and are randomly positioned and oriented. The orientation of ellipsoids is characterized by a probability density function of Eulerian angles of rotation. The cylindrical structures represent the stalks of vegetation and their radii are assumed to be much smaller than their lengths. The underlying soil is represented by a half-space medium with a homogeneous permittivity and uniform temperature profile. The radiative transfer quations are solved by a numerical method using a Gaussian quadrature formula to compute both the vertical and horizontal polarized brightness temperature as a function of observation angle. The theory was applied to the interpretation of experimental data obtained from sorghum covered fields near College Station, Texas

    Energy coupling in catastrophic collisions

    Get PDF
    The prediction of events leading to the catastrophic collisions and disruption of solar system bodies is fraught with the same difficulties as are other theories of impact events; since one simply cannot perform experiments in the regime of interest. In the catastrophic collisions of asteroids that regime involves bodies of a few tons to hundred of kilometers in diameter, and velocities of several kilometers pre second. For hundred kilometer bodies, gravitational stresses dominate material fracture strengths, but those gravitational stresses are essentially absent for laboratory experiments. Only numerical simulations using hydrocodes can in principle analyze the true problems, but they have their own major uncertainties about the correctness of the physical models and properties. The question of the measure of the impactor and its energy coupling is investigated using numerical code calculations. The material model was that of a generic silicate rock, including high pressure melt and vapor phases, and includes material nonlinearity and dissipation via a Mie-Gruniesen model. A series of calculations with various size ratios and impact velocities are reported

    Responses of quark condensates to the chemical potential

    Get PDF
    The responses of quark condensates to the chemical potential, as a function of temperature T and chemical potential \mu, are calculated within the Nambu--Jona-Lasinio (NJL) model. We compare our results with those from the recent lattice QCD simulations [QCD-TARO Collaboration, Nucl. Phys. B (Proc. Suppl.) 106, 462 (2002)]. The NJL model and lattice calculations show qualitatively similar behavior, and they will be complimentary ways to study hadrons at finite density. The behavior above T_c requires more elaborated analyses.Comment: 3 pages, 2 figs, based on a contribution to the Prof. Osamu Miyamura memorial symposium, Hiroshima University, Nov. 16-17, 2001; slightly revised, accepted for publication in Physical Review

    Stem Mechanical Strength in Thinned versus Non-thinned Ceanothus spinosus, KSP

    Get PDF
    What effect does the thinning of chaparral around building structures have on plant health? More specifically, does the thinning of Ceanothus spinosus influence mechanical strength? The ability of our native chaparral to withstand environmental factors, such as the Santa Ana winds, and overall health is directly related to plant strength. Seeking to answer these questions, we hypothesized that a difference in water potential between thinned and non-thinned chaparral affects the stem mechanical strength of the plants.We believed that thinned C. spinosus due to greater hydration will be mechanically stronger than non-thinned chaparral.The knowledge of what helps chaparral to be stronger and healthier can be used to further the understanding of plant survival after a wildfire.We collected C. spinosus from thinned and non-thinned areas on Drescher campus at Pepperdine University and brought them back to the lab to measure the stem mechanical strength using the Instron and the Scholander-Hammel Pressure Chamber.After performing our research on the C. spinosus, we found that, although our data reflected higher mechanical strength in the thinned chaparral, the difference was not significant enough to support our hypothesis
    corecore