17 research outputs found

    Quantum Symmetries and Strong Haagerup Inequalities

    Full text link
    In this paper, we consider families of operators {xr}r∈Λ\{x_r\}_{r \in \Lambda} in a tracial C∗^\ast-probability space (A,ϕ)(\mathcal A, \phi), whose joint ∗\ast-distribution is invariant under free complexification and the action of the hyperoctahedral quantum groups {Hn+}n∈N\{H_n^+\}_{n \in \N}. We prove a strong form of Haagerup's inequality for the non-self-adjoint operator algebra B\mathcal B generated by {xr}r∈Λ\{x_r\}_{r \in \Lambda}, which generalizes the strong Haagerup inequalities for ∗\ast-free R-diagonal families obtained by Kemp-Speicher \cite{KeSp}. As an application of our result, we show that B\mathcal B always has the metric approximation property (MAP). We also apply our techniques to study the reduced C∗^\ast-algebra of the free unitary quantum group Un+U_n^+. We show that the non-self-adjoint subalgebra Bn\mathcal B_n generated by the matrix elements of the fundamental corepresentation of Un+U_n^+ has the MAP. Additionally, we prove a strong Haagerup inequality for Bn\mathcal B_n, which improves on the estimates given by Vergnioux's property RD \cite{Ve}
    corecore