54 research outputs found

    Synthesis and Characterization of SiO2 Coated γ-Fe2O3 Nanocomposite Powder for Hyperthermic Application

    Get PDF
    SiO2 coated γ-Fe2O3 nanocomposite powder has been successfully synthesized by chemical vapor condensation process and its feasibility on hyperthermic application was investigated in this study. The power loss of SiO2 coated γ-Fe2O3 nanocomposite powder which means the magnetic heating effect under alternative magnetic field was much higher than the single phase γ-Fe2O3 nano powder due to the very fine size under 20 nm and well dispersion in biologically compatible SiO2 matrix. The superparamagnetism and hyperthermic property of SiO2 coated γ-Fe2O3 nanocomposite powder were discussed in terms of microstructural development in this study

    A Novel Synthetic Method for N Doped TiO2 Nanoparticles Through Plasma-Assisted Electrolysis and Photocatalytic Activity in the Visible Region

    Get PDF
    Nitrogen doped TiO2 (N-TiO2) nanoparticles were synthesized via a novel plasma enhanced electrolysis method using bulk titanium (Ti) as a source material and nitric acid as the nitrogen dopant. This method possesses remarkable merits with regard to the direct-metal synthesis of nanoparticles with its one-step process, eco-friendliness, and its ability to be mass produced. The nanoparticles were synthesized from bulk Ti metal and dipped in 5–15 mmol of a nitric acid electrolyte under the application of AC 500 V, the minimum range of voltage to generate plasma. By controlling the electrolyte concentration, the nanoparticle size distribution could be tuned between 12.1 and 24.7 nm using repulsion forces via variations in pH. The prepared N-TiO2 nanoparticles were calcined at between 100 and 300°C to determine their photocatalytic efficiency within the visible-light region, which depended on their crystal structure and N doping content. Analysis showed that the temperature treatment yielded an anatase TiO2 crystalline structure when the N doping content was varied from 0.4 to 0.54 at.%. In particular, the 0.4 at.% N doped TiO2 catalyst exhibited the highest catalytic performance with quadruple efficiency compared to the P-25 standard TiO2 nanoparticles, which featured a 91% degradation of methyl orange organic dye within 300 min. This solid-liquid reaction based on plasma enhanced electrolysis could open new pathways with regard to high purity mass producible ceramic nanoparticles with advanced properties

    Wettability investigation of UV/oand acid functionalized MWCNT and MWCNT/PMMA nanocomposites by contact angle measurement

    Get PDF
    The dispersion state of individual MWCNT in the polymer matrix influences the mechanical, thermal, and electrical properties of the resulting composite. One method of obtaining a good dispersion state of MWCNT in a polymer matrix is to functionalize the surface of MWCNT using various treatments to enhance the surface energy and increase the dispersibility of MWCNT. In this study, wettability and surface energy of UV/Oand acid-treated multiwall carbon nanotubes (MWCNTs) and its polymethyl methacrylate (PMMA) polymer nanocomposites were measured using contact angle analysis in various solvent media. Contact angle analysis was based on ethylene glycol-water-glycerol probe liquid set and data was further fitted into geometric mean (Fowkes), van Oss-Chaudhury-Good (GvOC), and Chang-Qing-Chen (CQC) models to determine both nonpolar and acid base surface energy components. Analysis was conducted on MWCNT thin films subjected to different levels of UV/Oand acid treatments as well as their resulting MWCNT/PMMA nanocomposites. Contact angle analysis of thin films and nanocomposites revealed that the total surface energy of all samples was well fitted with each other. In addition, CQC model was able to determine the surface nature and polarity of MWCNT and its nanocomposites. Results indicated that the wettability changes in the thin film and its nanocomposites are due to the change in surface chemistry. Finally, electrical properties of nanocomposites were measured to investigate the effect of surface functionality (acid or basic) on the MWCNT surfaces

    Significant Enhancement of Mechanical and Thermal Properties of Thermoplastic Polyester Elastomer by Polymer Blending and Nanoinclusion

    No full text
    Thermoplastic elastomer composites and nanocomposites were fabricated via melt processing technique by blending thermoplastic elastomer (TPEE) with poly(butylene terephthalate) (PBT) thermoplastic and also by adding small amount of organo modified nanoclay and/or polytetrafluoroethylene (PTFE). We study the effect of polymer blending on the mechanical and thermal properties of TPEE blends with and without nanoparticle additions. Significant improvement was observed by blending only TPEE and virgin PBT polymers. With a small amount (0.5 wt.%) of nanoclay or PTFE particles added to the TPEE composite, there was further improvement in both the mechanical and thermal properties. To study mechanical properties, flexural strength (FS), flexural modulus (FM), tensile strength (TS), and tensile elongation (TE) were all investigated. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to analyze the thermal properties, including the heat distortion temperature (HDT), of the composites. Scanning electron microscopy (SEM) was used to observe the polymer fracture surface morphology. The dispersion of the clay and PTFE nanoparticles was confirmed by transmission electron microscopy (TEM) analysis. This material is proposed for use as a baffle plate in the automotive industry, where both high HDT and high modulus are essential

    Comparison of the Magnetic Properties for the Surface-Modified Magnetite Nanoparticles

    No full text

    Effect of Deformation Temperature on the Magnetic Properties of PrFeB Alloy Fabricated by Gas Atomization

    No full text
    To form the fine micro-structures, the Pr17Fe78B5 magnet powders were produced in the optimized gas atomization conditions and it was investigated that the formation of the textures, microstructures, and the changes in the magnetic properties with increasing the deformation temperatures and rolling directions. Due to the rapid cooling system than the casting process, the homogenous microstructures were composed of the Pr-rich and Pr2Fe14B without any oxides and α-Fe and enables grain refinement. The pore ratios were 2.87, 1.42, and 0.22% at the deformation temperatures of 600, 700, 800°C, respectively in the rolled samples to align the c-axis which is the magnetic easy axis. Because Pr-rich phase cannot flow into the pore with a liquid state at low temperature, the improvement of pore densification was gradually observed with increasing deformation temperature. To confirm the magnetic decoupling effects of Pr2Fe14B phases by Pr-rich phases, the magnetic properties were investigated in rolled samples produced at the deformation temperature of 800°C. Although the remanent field is slightly decreased by 30%, the coercivity fields increased by about 2 times than that previous casted ingot. It is suggested that the gas atomization method can be suitable for fabricating grain refined and pure PrFeB magnets, and the plastic deformation conditions and rolling directions are a critical role to manipulate microstructure and magnetic properties

    Effect of Powder Size on the Microstructure and Magnetic Properties of Nd-Fe-B Magnet Alloy

    No full text
    Rare earth Nd-Fe-B, a widely used magnet composition, was synthesized in a shape of powders using gas atomization, a rapid solidification based process. The microstructure and properties were investigated in accordance with solidification rate and densification. Detailed microstructural characterization was performed by using scanning electron microscope (SEM) and the structural properties were measured by using X-ray diffraction. Iron in the form of α-Fe phase was observed in powder of about 30 μm. It was expected that fraction of Nd2 Fe14 B phase increased rapidly with decrease in powder size, on the other hand that of α-Fe phase was decreased. Nd-rich phase diffused from grain boundary to particle boundary after hot deformation due to capillary action. The coercivity of the alloy decreased with increase in powder size. After hot deformation, Nd2 Fe14 B phase tend to align to c-axis
    • …
    corecore