39,628 research outputs found
Higher order mode propagation in nonuniform circular ducts
Higher order mode propagation in a nonuniform circular duct without mean flow was investigated. An approximate wave equation is derived on the assumptions that the duct cross section varies slowly and that mode conversion is negligible. Exact closed form solutions are obtained for a particular class of converging-diverging circular duct which referred to as 'circular cosh duct.' Numerical results are presented in terms of the transmission loss for the various duct shapes and frequencies. The results are applicable to multimodal propagation, single mode propagation, and sound radiation from certain types of contoured inlet ducts, or of sound propagation in a converging-diverging duct of somewhat different shape from a cosh duct
Mode Propagation in Nonuniform Circular Ducts with Potential Flow
A previously reported closed form solution is expanded to determine effects of isentropic mean flow on mode propagation in a slowly converging-diverging duct, a circular cosh duct. On the assumption of uniform steady fluid density, the mean flow increases the power transmission coefficient. The increase is directly related to the increase of the cutoff ratio at the duct throat. With the negligible transverse gradients of the steady fluid variables, the conversion from one mode to another is negligible, and the power transmission coefficient remains unchanged with the mean flow direction reversed. With a proper choice of frequency parameter, many different modes can be made subject to a single value of the power transmission loss. A systematic method to include the effects of the gradients of the steady fluid variables is also described
Color Reflection Invariance and Monopole Condensation in QCD
We review the quantum instability of the Savvidy-Nielsen-Olesen (SNO) vacuum
of the one-loop effective action of SU(2) QCD, and point out a critical defect
in the calculation of the functional determinant of the gluon loop in the SNO
effective action. We prove that the gauge invariance, in particular the color
reflection invariance, exclude the unstable tachyonic modes from the gluon loop
integral. This guarantees the stability of the magnetic condensation in QCD.Comment: 28 pages, 3 figures, JHEP styl
Abelian Dominance in Wilson Loops
It has been conjectured that the Abelian projection of QCD is responsible for
the confinement of color. Using a gauge independent definition of the Abelian
projection which does {\it not} employ any gauge fixing, we provide a strong
evidence for the Abelian dominance in Wilson loop integral. In specific we
prove that the gauge potential which contributes to the Wilson loop integral is
precisely the one restricted by the Abelian projection.Comment: 4 pages, no figure, revtex. Phys. Rev. D in pres
Atmospheric Circulation of Exoplanets
We survey the basic principles of atmospheric dynamics relevant to explaining
existing and future observations of exoplanets, both gas giant and terrestrial.
Given the paucity of data on exoplanet atmospheres, our approach is to
emphasize fundamental principles and insights gained from Solar-System studies
that are likely to be generalizable to exoplanets. We begin by presenting the
hierarchy of basic equations used in atmospheric dynamics, including the
Navier-Stokes, primitive, shallow-water, and two-dimensional nondivergent
models. We then survey key concepts in atmospheric dynamics, including the
importance of planetary rotation, the concept of balance, and scaling arguments
to show how turbulent interactions generally produce large-scale east-west
banding on rotating planets. We next turn to issues specific to giant planets,
including their expected interior and atmospheric thermal structures, the
implications for their wind patterns, and mechanisms to pump their east-west
jets. Hot Jupiter atmospheric dynamics are given particular attention, as these
close-in planets have been the subject of most of the concrete developments in
the study of exoplanetary atmospheres. We then turn to the basic elements of
circulation on terrestrial planets as inferred from Solar-System studies,
including Hadley cells, jet streams, processes that govern the large-scale
horizontal temperature contrasts, and climate, and we discuss how these
insights may apply to terrestrial exoplanets. Although exoplanets surely
possess a greater diversity of circulation regimes than seen on the planets in
our Solar System, our guiding philosophy is that the multi-decade study of
Solar-System planets reviewed here provides a foundation upon which our
understanding of more exotic exoplanetary meteorology must build.Comment: In EXOPLANETS, edited by S. Seager, to be published in the Spring of
2010 in the Space Science Series of the University of Arizona Press (Tucson,
AZ) (refereed; accepted for publication
On Signatures of Atmospheric Features in Thermal Phase Curves of Hot Jupiters
Turbulence is ubiquitous in Solar System planetary atmospheres. In hot
Jupiter atmospheres, the combination of moderately slow rotation and thick
pressure scale height may result in dynamical weather structures with unusually
large, planetary-size scales. Using equivalent-barotropic, turbulent
circulation models, we illustrate how such structures can generate a variety of
features in the thermal phase curves of hot Jupiters, including phase shifts
and deviations from periodicity. Such features may have been spotted in the
recent infrared phase curve of HD 189733b. Despite inherent difficulties with
the interpretation of disk-integrated quantities, phase curves promise to offer
unique constraints on the nature of the circulation regime present on hot
Jupiters.Comment: 22 pages, 6 figures, 1 table, accepted for publication in Ap
- âŠ