1,798 research outputs found

    A novel illumination compensation scheme for sprite coding

    Get PDF
    Author name used in this publication: Dagan FengCentre for Multimedia Signal Processing, Department of Electronic and Information EngineeringRefereed conference paper2004-2005 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Synergistic effect of nogo-neutralizing antibody IN-1 and ciliary neurotrophic factor on axonal regeneration in adult rodent visual systems

    Get PDF
    The presence of Nogo axon regeneration inhibitory molecules in the central nervous system (CNS) and the counteracting effect of IN-1 antibodies have been widely reported. In this study, we examined the effect of IN-1-producing hybridoma cells on axon regeneration in adult rodent retinal ganglion cells (RGCs) after various types of optic nerve (ON) injury, evaluating therein whether ciliary neurotrophic factor (CNTF) potentiated the effect of IN-1. We found that application of IN-1 alone failed to enhance regeneration of intracranially or intraorbitally transected RGC axons in a peripheral nerve (PN) graft. IN-1 hybridoma cells also failed to significantly promote intraorbitally crushed ON axons to reenter the distal part of the ON. However, a combined application of IN-1 and CNTF had a synergistic effect in both intracranial PN and intraorbital ON crush paradigms. This study suggests that the action of IN-1 antibodies in promoting axon regeneration in the CNS could be more effective when coupled with other appropriate factors.published_or_final_versio

    Draw solutes in forward osmosis processes

    Full text link
    © 2015 by the American Society of Civil Engineers. All Rights Reserved. This chapter provides insight into the selection of suitable draw solutions (DS) and reviews different DS characteristics affecting the performance of forward osmosis (FO) processes. Although some commercial applications of FO technology exist, the development of an effective large-scale process is currently limited due to the lack of both suitable DS and membrane. The success of most FO applications also relies on how the DS can be recovered from the produced water. Therefore, in commercial FO processes, such as FO followed by reverse osmosis seawater desalination, emergency drinks and osmotic dilution are used without a DS recovery system-a simple and energy-saving solution. Research is still needed to develop more suitable DS to achieve full-scale commercialization of the FO process

    Titania Nanomaterials Produced from Ti-Salt Flocculated Sludge in Water Treatment

    Full text link
    Titania is the most widely used metal oxide for the applications of pigments, paper, solar cells and environmental purification. In order to meet the demand of a large amount of titania, our group has developed a novel process which could significantly lower the cost of waste disposal in water treatment, protect the environment and public health and yield economically valuable titania. Titanium tetrachloride (TiCl4) or titanium sulfate (Ti(SO4)2) as an alternative coagulant in water treatment has been explored for the removal of various pollutants from contaminated water or wastewater. Flocculation efficiencies of the Ti-salts were superior to those of Al- and Fe- salts with additional benefits in that a large amount of titania can be produced by calcinating the flocculated floc. The produced titania showed high photocatalytic activity for the removal of volatile organic compounds. The large amount of titania can be applied to pigments, environment and construction materials which require a lot of titania usages. This review paper presents an historical progress from fundamental to application in terms of the detailed production process, characterization, photoactivity of titania produced from Ti-salt flocculated sludge, and its various applications. © 2011 Springer Science+Business Media, LLC

    Preparation of titanium dioxide (TiO<inf>2</inf>) from sludge produced by titanium tetrachloride (TiCl<inf>4</inf>) flocculation of wastewater

    Full text link
    Sludge disposal is one of the most costly and environmentally problematic challenges of modern wastewater treatment worldwide. In this study, a new process was developed, which has a significant potential for lower cost of waste disposal, protection of the environment and public health, and yield of economically useful byproducts. Titanium oxide (TiO2), which is the most widely used metal oxide, was produced from the wastewater sludge generated by the flocculation of secondary wastewater with titanium tetrachloride (TiCl4). Detailed analyses were conducted to compare TiCl 4, ferric chloride (FeCl3), and aluminum sulfate (Al 2(SO4)3) flocculation. Removal of organic matter and different molecular sizes by Ti-salt flocculation was similar to that of the most widely used Fe- and Al-salt flocculation. The mean size of Ti-, Fe-, and Al-salt flocs was 47.5, 42.5, and 16.9 μm, respectively. The decantability of the settled flocs by TiCl4 coagulant was similar to that by FeCl3 coagulant and much higher than that of Al 2(SO4)3. The photocatalyst from wastewater (PFW) produced by TiCl4 flocculation was characterized by X-ray diffraction, BET surface area, scanning electron microscopy/energy dispersive X-ray, transmission electron microscopy, photocatalytic activity, and X-ray photoelectron spectroscopy. The resulting PFW was found to be superior to commercial TiO2 (P-25) in terms of photocatalytic activity and surface area. The PFW was also found to be mainly doped with C and P atoms. The atomic percentage of the PFW was TiO1.42C0.44P 0.14. © 2007 American Chemical Society

    The N-terminal methionine of cellular proteins as a degradation signal

    Get PDF
    The Arg/N-end rule pathway targets for degradation proteins that bear specific unacetylated N-terminal residues while the Ac/N-end rule pathway targets proteins through their N-infinity-terminally acetylated (Nt-acetylated) residues. Here, we show that Ubr1, the ubiquitin ligase of the Arg/N-end rule pathway, recognizes unacetylated N-terminal methionine if it is followed by a hydrophobic residue. This capability of Ubr1 expands the range of substrates that can be targeted for degradation by the Arg/N-end rule pathway because virtually all nascent cellular proteins bear N-terminal methionine. We identified Msn4, Sry1, Arl3, and Pre5 as examples of normal or misfolded proteins that can be destroyed through the recognition of their unacetylated N-terminal methionine. Inasmuch as proteins bearing the Nt-acetylated N-terminal methionine residue are substrates of the Ac/N-end rule pathway, the resulting complementarity of the Arg/N-end rule and Ac/N-end rule pathways enables the elimination of protein substrates regardless of acetylation state of N-terminal methionine in these substrates.X117863Ysciescopu

    Cell immobilized fog-trap system for fat, oil, and grease removal from restaurant wastewater

    Full text link
    Cell immobilized lipase-producing bacteria on three different matrices were incorporated in a fat-, oil-, and grease (FOG) trap system for restaurant wastewater treatment. During a 16-day laboratory-scale experiment for the treatment of synthetic FOG wastewater containing soybean oil, no significant difference (two-tailed t test at 95% confidence interval) in the FOG removal between two systems was observed at FOG influent≤1,000 mg/L. However, the typical trap showed lower FOG removal efficiency than the matrix-based system when the influent FOG concentration was increased to ≥5,000 mg/L. In addition, the matrix-based trap system was able to sustain a stable high FOG removal, with <100 mg/L effluent, even at 10,000 mg/L influent FOG. Based on FOG heights measured and mass balance calculations, 97.4 and 99.5% of the total FOG load for 16 days were removed in a typical trap and matrix-based system, respectively. About 93.6% of the removal in the matrix-based was accounted to biodegradation. The 30-day full-scale operations demonstrated a distinguishably better performance in the matrix-based system (92.7±9.06% of 1,044.8±537.27 mg FOG/L) than in the typical trap system (74.6±27.13% of 463.4±296.87 mg FOG/L) for the treatment of barbeque restaurant wastewater. Similarly, matrix-based system revealed higher chemical oxygen demand removal (85.9±11.99%) than the typical trap system (60.4±31.26%). Characterizations of the influent, emulsified, adsorbed and effluent FOG indicated that straight saturated fatty acids constituted the cause of clogging problems in the FOG-trap and piping system. © 2009 ASCE

    Spatial resolution study and power calibration of the high-k scattering system on NSTX

    Get PDF
    NSTX high-k scattering system has been extensively utilized in studying the microturbulence and coherent waves. An absolute calibration of the scattering system was performed employing a new millimeter-wave source and calibrated attenuators. One of the key parameters essential for the calibration of the multichannel scattering system is the interaction length. This interaction length is significantly different from the conventional one due to the curvature and magnetic shear effect.ope

    Novel membrane bioreactor (MBR) coupled with a nonwoven fabric filter for household wastewater treatment

    Full text link
    Conventional and modified membrane bioreactors (MBRs) are increasingly used in small-scale wastewater treatment. However, their widespread applications are hindered by their relatively high cost and operational complexity. In this study, we investigate a new concept of wastewater treatment using a nonwoven fabric filter bag (NFFB) as the membrane bioreactor. Activated sludge is charged in the nonwoven fabric filter bag and membrane filtration via the fabric is achieved under gravity flow without a suction pump. This study found that the biofilm layer formed inside the NFFB achieved 10 mg/L of suspended solids in the permeate within 20 min of initial operation. The dynamic biofilter layer showed good filterability and the specific membrane resistance consisted of 0.3-1.9 × 1012 m/kg. Due to the low F/M ratio (0.04-0.10 kg BOD5/m3/d) and the resultant low sludge yield, the reactor was operated without forming excess sludge. Although the reactor provided aerobic conditions, denitrification occurred in the biofilm layer to recover the alkalinity, thereby eliminating the need to supplement the alkalinity. This study indicates that the NFFB system provides a high potential of effective wastewater treatment with simple operation at reduced cost, and hence offer an attractive solution for widespread use in rural and sparsely populated areas. Crown Copyright © 2009

    Hydrogen production affected by Pt concentration on TiO <inf>2</inf> produced from the incineration of dye wastewater flocculated sludge using titanium tetrachloride

    Full text link
    TiO 2 from the incineration of dye wastewater flocculated sludge using TiCl 4 coagulant was produced. Optimal catalyst amount and Pt-loading on TiO 2 were studied for the production of H 2 by photocatalytic reforming of methanol (6% vol.). On the other hand, BTSE (biologically treated sewage effluent) was flocculated using TiCl4 and produced sludge was incinerated to generate TiO 2 . TiO 2 was loaded with optimum Pt and added to the supernatant in a photocatalytic reactor to test the efficiency of using remaining organics as a “sacrificial reagent” for photocatalytic hydrogen production. Dissolved organic carbon (DOC) and molecular weight distribution (MWD) were measured for nanofiltration (NF) and TiCl 4 flocculation followed by photocatalysis. TiO 2 (from the incineration of BTSE flocculated sludge using TiCl4) was produced and loaded with 0.5% Pt. Results showed that the optimum concentration of TiO 2 (from dye wastewater) for H 2 production was 0.3 g/L, while the optimum amount of Pt was 0.5%. DOC and MWD removal was similar for the flocculation of BTSE followed by photocatalytic reaction and the NF process. Remaining organic compounds after flocculation could not be used as sacrificial reagent to induce H 2 production. Further investigations on studying the UV intensity and/or identifying organic/inorganic scavengers to inhibit H 2 production are underway. © 2010, Taylor & Francis Group, LLC
    corecore