43,551 research outputs found

    Growth of Magnetic Fields Induced by Turbulent Motions

    Get PDF
    We present numerical simulations of driven magnetohydrodynamic (MHD) turbulence with weak/moderate imposed magnetic fields. The main goal is to clarify dynamics of magnetic field growth. We also investigate the effects of the imposed magnetic fields on the MHD turbulence, including, as a limit, the case of zero external field. Our findings are as follows. First, when we start off simulations with weak mean magnetic field only (or with small scale random field with zero imposed field), we observe that there is a stage at which magnetic energy density grows linearly with time. Runs with different numerical resolutions and/or different simulation parameters show consistent results for the growth rate at the linear stage. Second, we find that, when the strength of the external field increases, the equilibrium kinetic energy density drops by roughly the product of the rms velocity and the strength of the external field. The equilibrium magnetic energy density rises by roughly the same amount. Third, when the external magnetic field is not very strong (say, less than ~0.2 times the rms velocity when measured in the units of Alfven speed), the turbulence at large scales remains statistically isotropic, i.e. there is no apparent global anisotropy of order B_0/v. We discuss implications of our results on astrophysical fluids.Comment: 16 pages, 18 figures; ApJ, accepte

    Light bottom squark and gluino confront electroweak precision measurements

    Full text link
    We address the compatibility of a light sbottom (mass 2\sim 5.5 \gev) and a light gluino (mass 12\sim 16 \gev) with electroweak precision measurements. Such light particles have been suggested to explain the observed excess in the bb quark production cross section at the Tevatron. The electroweak observables may be affected by the sbottom and gluino through the SUSY-QCD corrections to the ZbbZbb vertex. We examine, in addition to the SUSY-QCD corrections, the electroweak corrections to the gauge boson propagators from the stop which are allowed to be light from the SU(2)L_L symmetry. We find that this scenario is strongly disfavored from electroweak precision measurements unless the heavier sbottom mass eigenstate is lighter than 180\gev and the left-right mixing in the stop sector is sufficiently large. This implies that one of the stops should be lighter than about 98\gev.Comment: 4 pages, revtex, 2 figures. Reference added, version to appear in Phys.Rev.Let

    Polarization of Upsilon(nS) at the Tevatron

    Full text link
    The polarization of inclusive Upsilon(nS) at the Fermilab Tevatron is calculated within the nonrelativistic QCD factorization framework. We use a recent determination of the NRQCD matrix elements from fitting the CDF data on bottomonium production from Run IB of the Tevatron. The result for the polarization of Upsilon(1S) integrated over the transverse momentum bin 8 < p_T < 20 GeV is consistent with a recent measurement by the CDF Collaboration. The transverse polarization of Upsilon(1S) is predicted to increase steadily for p_T greater than about 10 GeV. The Upsilon(2S) and Upsilon(3S) are predicted to have significantly larger transverse polarizations than Upsilon(1S).Comment: 15 pages, 3 figure

    Super Jackstraws and Super Waterwheels

    Full text link
    We construct various new BPS states of D-branes preserving 8 supersymmetries. These include super Jackstraws (a bunch of scattered D- or (p,q)-strings preserving supersymmetries), and super waterwheels (a number of D2-branes intersecting at generic angles on parallel lines while preserving supersymmetries). Super D-Jackstraws are scattered in various dimensions but are dynamical with all their intersections following a common null direction. Meanwhile, super (p,q)-Jackstraws form a planar static configuration. We show that the SO(2) subgroup of SL(2,R), the group of classical S-duality transformations in IIB theory, can be used to generate this latter configuration of variously charged (p,q)-strings intersecting at various angles. The waterwheel configuration of D2-branes preserves 8 supersymmetries as long as the `critical' Born-Infeld electric fields are along the common direction.Comment: 23 pages, 10 figure

    Quarkonium Wave Functions at the Origin

    Get PDF
    We tabulate values of the radial Schr\"{o}dinger wave function or its first nonvanishing derivative at zero quark-antiquark separation, for ccˉc\bar{c}, cbˉc\bar{b}, and bbˉb\bar{b} levels that lie below, or just above, flavor threshold. These quantities are essential inputs for evaluating production cross sections for quarkonium states.Comment: 9 pages, RevTeX, no figure

    Polarization of Prompt J/psi at the Tevatron

    Full text link
    The polarization of prompt J/psi at the Fermilab Tevatron is calculated within the nonrelativistic QCD factorization framework. The contribution from radiative decays of P-wave charmonium states decreases, but does not eliminate, the transverse polarization at large transverse momentum. The angular distribution parameter alpha for leptonic decays of the J/\psi is predicted to increase from near 0 at p_T = 5 GeV to about 0.5 at p_T = 20 GeV. The prediction is consistent with measurements by the CDF Collaboration at intermediate values of p_T, but disagrees by about 3 standard deviations at the largest values of p_T measured.Comment: 4 pages, 2 figures, one reference added, accepted for publication in Phys. Rev.

    RF System Upgrades to the Advanced Photon Source Linear Accelerator in Support of the Fel Operation

    Get PDF
    The S-band linear accelerator, which was built to be the source of particles and the front end of the Advanced Photon Source injector, is now also being used to support a low-energy undulator test line (LEUTL) and to drive a free-electron laser (FEL). The more severe rf stability requirements of the FEL have resulted in an effort to identify sources of phase and amplitude instability and implement corresponding upgrades to the rf generation chain and the measurement system. Test data and improvements implemented and planned are describedComment: LC 2000 (3 pages, 6 figures

    Magnetic Field Structure and Stochastic Reconnection in a Partially Ionized Gas

    Full text link
    We consider stochastic reconnection in a magnetized, partially ionized medium. Stochastic reconnection is a generic effect, due to field line wandering, in which the speed of reconnection is determined by the ability of ejected plasma to diffuse away from the current sheet along magnetic field lines, rather than by the details of current sheet structure. We consider the limit of weak stochasticity, so that the mean magnetic field energy density is greater than either the turbulent kinetic energy density or the energy density associated with the fluctuating component of the field. We consider field line stochasticity generated through a turbulent cascade, which leads us to consider the effect of neutral drag on the turbulent cascade of energy. In a collisionless plasma, neutral particle viscosity and ion-neutral drag will damp mid-scale turbulent motions, but the power spectrum of the magnetic perturbations extends below the viscous cutoff scale. We give a simple physical picture of the magnetic field structure below this cutoff, consistent with numerical experiments. We provide arguments for the reemergence of the turbulent cascade well below the viscous cut-off scale and derive estimates for field line diffusion on all scales. We note that this explains the persistence of a single power law form for the turbulent power spectrum of the interstellar medium, from scales of tens of parsecs down to thousands of kilometers. We find that under typical conditions in the ISM stochastic reconnection speeds are reduced by the presence of neutrals, but by no more than an order of magnitude.Comment: Astrophysical Journal in pres

    Modelling the dynamics of global monopoles

    Get PDF
    A thin wall approximation is exploited to describe a global monopole coupled to gravity. The core is modelled by de Sitter space; its boundary by a thin wall with a constant energy density; its exterior by the asymptotic Schwarzschild solution with negative gravitational mass MM and solid angle deficit, ΔΩ/4π=8πGη2\Delta\Omega/4\pi = 8\pi G\eta^2, where η\eta is the symmetry breaking scale. The deficit angle equals 4π4\pi when η=1/8πG≡Mp\eta=1/\sqrt{8\pi G} \equiv M_p. We find that: (1) if η<Mp\eta <M_p, there exists a unique globally static non-singular solution with a well defined mass, M0<0M_0<0. M0M_0 provides a lower bound on MM. If M0<M<0M_0<M<0, the solution oscillates. There are no inflating solutions in this symmetry breaking regime. (2) if η≄Mp\eta \ge M_p, non-singular solutions with an inflating core and an asymptotically cosmological exterior will exist for all M<0M<0. (3) if η\eta is not too large, there exists a finite range of values of MM where a non-inflating monopole will also exist. These solutions appear to be metastable towards inflation. If MM is positive all solutions are singular. We provide a detailed description of the configuration space of the model for each point in the space of parameters, (η,M)(\eta, M) and trace the wall trajectories on both the interior and the exterior spacetimes. Our results support the proposal that topological defects can undergo inflation.Comment: 44 pages, REVTeX, 11 PostScript figures, submitted to the Physical Review D. Abstract's correcte
    • 

    corecore