48,982 research outputs found

    Monopoles and Knots in Skyrme Theory

    Get PDF
    We show that the Skyrme theory actually is a theory of monopoles which allows a new type of solitons, the topological knots made of monopole-anti-monopole pair,which is different from the well-known skyrmions. Furthermore, we derive a generalized Skyrme action from the Yang-Mills action of QCD, which we propose to be an effective action of QCD in the infra-red limit. We discuss the physical implications of our results.Comment: 4 pages. Phys. Rev. Lett. in pres

    The Entropy Function for the Black Holes of Nariai Class

    Full text link
    Based on the fact that the near horizon geometry of the extremal Schwarzschild-de Sitter black holes is Nariai geometry, we define the black holes of Nariai class as the configuration whose near-horizon geometry is factorized as two dimensional de Sitter space-time and some compact topology, that is Nariai geometry. We extend the entropy function formalism to the case of the black holes of Nariai class. The conventional entropy function (for the extremal black holes) is defined as Legendre transformation of Lagrangian density, thus the `Routhian density', over two dimensional anti-de Sitter. As for the black holes of Nariai class, it is defined as {\em minus} `Routhian density' over two dimensional de Sitter space-time. We found an exact agreement of the result with Bekenstein-Hawking entropy. The higher order corrections are nontrivial only when the space-time dimension is over four, that is, d>4d>4. There is a subtlety as regards the temperature of the black holes of Nariai class. We show that in order to be consistent with the near horizon geometry, the temperature should be non-vanishing despite the extremality of the black holes.Comment: references added, compatible with the published versio

    Schwinger Effect in Non-parallel D1-branes: A Path Integral Approach

    Full text link
    We study the Schwinger effect in a system of non-parallel D1-branes for the bosonic strings using the path integral formalism. We drive the string pair creation rate by calculating the one loop vacuum amplitude of the setup in presence of the background electric filed defined along one of the D1-branes. We find an angle dependent minimum value for the background field and show that the decaying of vacuum into string pairs takes place for the field above this value. It is shown that in θ→π2\theta\rightarrow\frac{\pi}{2} limit the vacuum becomes stable and thus no pair creation occurs

    Inflating magnetically charged braneworlds

    Full text link
    Numerical solutions of Einstein, scalar, and gauge field equations are found for static and inflating defects in a higher-dimensional spacetime. The defects have (3+1)(3+1)-dimensional core and magnetic monopole configuration in n=3n=3 extra dimensions. For symmetry-breaking scale η\eta below the critical value ηc\eta_c, the defects are characterized by a flat worldsheet geometry and asymptotically flat extra dimensions. The critical scale ηc\eta_c is comparable to the higher-dimensional Planck scale and has some dependence on the gauge and scalar couplings. For η=ηc\eta=\eta_c, the extra dimensions degenerate into a `cigar', and for η>ηc\eta>\eta_c all static solutions are singular. The singularity can be removed if the requirement of staticity is relaxed and defect cores are allowed to inflate. The inflating solutions have de Sitter worldsheets and cigar geometry in the extra dimensions. Exact analytic solutions describing the asymptotic behavior of these inflating monopoles are found and the parameter space of these solutions is analyzed.Comment: 35 pages, revtex, 18 eps figure

    Gravitational field of vacuumless defects

    Full text link
    It has been recently shown that topological defects can arise in symmetry breaking models where the scalar field potential V(ϕ)V(\phi) has no minima and is a monotonically decreasing function of ∣ϕ∣|\phi|. Here we study the gravitational fields produced by such vacuumless defects in the cases of both global and gauge symmetry breaking. We find that a global monopole has a strongly repulsive gravitational field, and its spacetime has an event horizon similar to that in de Sitter space. A gauge monopole spacetime is essentially that of a magnetically charged black hole. The gravitational field of a global string is repulsive and that of a gauge string is attractive at small distances and repulsive at large distances. Both gauge and global string spacetimes have singularities at a finite distance from the string core.Comment: 19 pages, REVTeX, 6 Postscript figure

    Purification through Zeno-like Measurements

    Full text link
    A series of frequent measurements on a quantum system (Zeno-like measurements) is shown to result in the ``purification'' of another quantum system in interaction with the former. Even though the measurements are performed on the former system, their effect drives the latter into a pure state, irrespectively of its initial (mixed) state, provided certain conditions are satisfied.Comment: REVTeX4, 4 pages, 1 figure; to be published in Phys. Rev. Lett. (2003

    Polarization of Prompt J/psi at the Tevatron

    Full text link
    The polarization of prompt J/psi at the Fermilab Tevatron is calculated within the nonrelativistic QCD factorization framework. The contribution from radiative decays of P-wave charmonium states decreases, but does not eliminate, the transverse polarization at large transverse momentum. The angular distribution parameter alpha for leptonic decays of the J/\psi is predicted to increase from near 0 at p_T = 5 GeV to about 0.5 at p_T = 20 GeV. The prediction is consistent with measurements by the CDF Collaboration at intermediate values of p_T, but disagrees by about 3 standard deviations at the largest values of p_T measured.Comment: 4 pages, 2 figures, one reference added, accepted for publication in Phys. Rev.
    • …
    corecore