36 research outputs found

    Improved pregnancy rate and sex ratio in fresh/frozen in vivo derived embryo transfer of Hanwoo (Bos taurus coreanae) cows

    Get PDF
    This study aimed to assess the effects of embryonic developmental stage, quality grade, and fresh or frozen/thawed conditions on the pregnancy rate and sex ratio of live offspring in Hanwoo (Bos taurus coreanae) cows. The quality and developmental stage of in vivo-derived (IVD) transferred embryos were evaluated using the standard criteria of the International Embryo Technology Society. The recipient cows were synchronized using conventional (estradiol benzoate and progesterone) protocols before embryo transfer. Embryos were transferred to 297 cows, and pregnancy was monitored for 60–70 days after embryo transfer. The pregnancy rates of fresh and frozen/thawed embryos were 56.90% and 52.49%, respectively. Pregnancy rates varied according to embryo quality (56.18% for grade 1 vs. 36.67% for grade 2). Pregnancy rates also varied by developmental stage and cryopreservation (67.86% vs. 63.49% for stage 4-1, 64.00% vs. 54.72% for 5-1, and 50.00% vs. 47.83% for 6-1, in fresh embryos vs. frozen/thawed embryos, respectively). For stage 7-1, the pregnancy rates were 72.73% for fresh embryos and 20.00% for frozen/thawed embryos. In 66 fresh embryos, the sex ratio of live offspring was 5:5, whereas it was 4(female):6(male) for frozen/thawed embryos among the 95 frozen/thawed embryos. The miscarriage rate was approximately 3% higher for frozen/thawed embryos than for fresh embryos (18.1% for fresh vs. 21.1% for frozen). Seasonal fertility rates were 33.3% in spring, 55.67% in summer, 52.8% in autumn, 60.0% in winter. The following male-to-female ratios were observed in different seasons: 6.7:3.3 in spring, 4.0:6.0 in summer, 5.5:4.5 in autumn, and 3.3:6.7 in winter. The current data revealed no significant differences in pregnancy rates between fresh and frozen/thawed IVD embryos. However, there was a lower pregnancy rate with advanced-stage frozen/thawed embryos (stage 7-1). The current study provides comprehensive results for the better optimization of embryo transfer in Hanwoo cattle to obtain the desired fertility rate, pregnancy rate, and sex ratio of calves. These results provide important insights into the factors that influence the viability and success of IVD embryo transfer in Hanwoo cows and may have practical applications for improving breeding programs and reducing production costs

    Relevance of multilamellar and multicompartmental vesicles in biological fluids: understanding the significance of proportional variations and disease correlation

    No full text
    Abstract Extracellular vesicles (EVs) have garnered significant interest in the field of biomedical science due to their potential applications in therapy and diagnosis. These vesicles participate in cell-to-cell communication and carry a diverse range of bioactive cargo molecules, such as nucleic acids, proteins, and lipids. These cargoes play essential roles in various signaling pathways, including paracrine and endocrine signaling. However, our understanding of the morphological and structural features of EVs is still limited. EVs could be unilamellar or multilamellar or even multicompartmental structures. The relative proportions of these EV subtypes in biological fluids have been associated with various human diseases; however, the mechanism remains unclear. Cryo-electron microscopy (cryo-EM) holds great promise in the field of EV characterization due to high resolution properties. Cryo-EM circumvents artifacts caused by fixation or dehydration, allows for the preservation of native conformation, and eliminates the necessity for staining procedures. In this review, we summarize the role of EVs biogenesis and pathways that might have role on their structure, and the role of cryo-EM in characterization of EVs morphology in different biological samples and integrate new knowledge of the alterations of membranous structures of EVs which could be used as biomarkers to human diseases

    Improved Post-Thaw Quality of Canine Semen after Treatment with Exosomes from Conditioned Medium of Adipose-Derived Mesenchymal Stem Cells

    No full text
    Freezing decreases sperm quality, ultimately affecting fertilizing ability. The repair of freeze-damaged sperm is considered crucial for improving post-thaw viability and fertility. We investigated the effects of exosomes derived from canine adipose-derived mesenchymal stem cells on dog sperm structure and function during cryopreservation. The pooled ejaculate was diluted with buffer, without (Control), or with exosomal proteins (25, 50, or 100 µg/mL). Using fresh semen, the determined optimal exosomal protein concentration was 50 µg/mL (Group 2) which was used in further experiments. Post-thaw sperm treated with exosomes were superior to control (p < 0.05) in terms of motility (56.8 ± 0.3% vs. 47.2 ± 0.3%), live sperm percentage (55.9 ± 0.4% vs. 45.4 ± 0.4%), membrane integrity (55.6 ± 0.5% vs. 47.8 ± 0.3%), and acrosome integrity (60.4 ± 1.1% vs. 48.6 ± 0.4%). Moreover, expression of genes related to the repair of the plasma membrane (ANX 1, FN 1, and DYSF), and chromatin material (H3, and HMGB 1) was statistically higher in exosome-treated sperm than control, but the expression of the mitochondrial reactive oxygen species modulator 1 gene was significantly higher in control. Therefore, exosomal treatment may improve the quality of post-thaw dog semen through initiating damaged sperm repair and decreasing reactive oxygen species production

    Daily injection of melatonin inhibits insulin resistance induced by chronic mealtime shift

    No full text
    Shift work disorders have become an emerging concern worldwide. Shift disorders encompass a wide range of illnesses that have yet to be identified. The study focused on the relationship between shift work disorders and insulin resistance. Previously, it was reported that advancing the usual mealtime of mice triggered insulin resistance. Here, the hypothesis that chronic mealtime shifts induce oxidative damage leading to chronic diseases such as type 2 diabetes was tested. It was found that mealtime shift causes imbalances between anti-oxidative capacity and reactive oxygen species (ROS) levels, indicating increased oxidative damage during the light/rest phase. This study further demonstrated that daily supplementation of antioxidants at the appropriate time of day inhibited insulin resistance caused by chronic mealtime shifts, suggesting significant and chronic health implications for shift workers. In conclusion, it was confirmed that increased ROS levels caused by mealtime shift induce insulin resistance, which is inhibited by the antioxidant melatonin. © 2022 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.TRU

    Oviduct Epithelial Cell-Derived Extracellular Vesicles Improve Porcine Trophoblast Outgrowth

    No full text
    Porcine species have a great impact on studies on biomaterial production, organ transplantation and the development of biomedical models. The low efficiency of in vitro-produced embryos to derive embryonic stem cells has made achieving this goal a challenge. The fallopian tube plays an important role in the development of embryos. Extracellular vesicles (EVs) secreted by oviductal epithelial cells play an important role in the epigenetic regulation of embryo development. We used artificially isolated oviductal epithelial cells and EVs. In this study, oviductal epithelial cell (OEC) EVs were isolated and characterized through transmission electron microscopy, nanoparticles tracking analysis, western blotting and proteomics. We found that embryo development and blastocyst formation rate was significantly increased (14.3% ± 0.6% vs. 6.0% ± 0.6%) after OEC EVs treatment. According to our data, the inner cell mass (ICM)/trophectoderm (TE) ratio of the embryonic cell number increased significantly after OEC EVs treatment (43.7% ± 2.3% vs. 28.4% ± 2.1%). Meanwhile, the attachment ability of embryos treated with OEV EVs was significantly improved (43.5% ± 2.1% vs. 29.2% ± 2.5%, respectively). Using quantitative polymerase chain reaction (qPCR), we found that the expression of reprogramming genes (POU5F1, SOX2, NANOG, KLF4 and c-Myc) and implantation-related genes (VIM, KRT8, TEAD4 and CDX2) significantly increased in OEC EV-treated embryos. We report that OEC EV treatment can improve the development and implantation abilities of embryos

    Loss of function of endothelin-2 leads to reduced ovulation and CL formation.

    No full text
    Endothelin-2 (EDN2), a potent vasoconstrictive peptide, is transiently produced by periovulatory follicles at the time of ovulation when corpus luteum (CL) formation begins. EDN2 induces contraction of ovarian smooth muscles ex vivo via an endothelin receptor A-mediated pathway. In this study, we aimed to determine if EDN2 is required for normal ovulation and subsequent CL formation in?vivo. In the ovaries of a mouse model that globally lacks the Edn2 gene (Edn2 knockout mouse; Edn2KO), histology showed that post-pubertal Edn2KO mice possess follicles of all developmental stages, but no corpora lutea. When exogenous gonadotropins were injected to induce super-ovulation, Edn2KO mice exhibited significantly impaired ovulation and CL formation compared to control littermates. Edn2KO ovaries that did ovulate in response to gonadotropins did not contain histologically and functionally identifiable CL. Intra-ovarian injection of EDN2 peptide results suggest partial induction of ovulation in Edn2KO mice. Endothelin receptor antagonism in wild type mice similarly disrupted ovulation, CL formation, and progesterone secretion. Overall, this study suggests that EDN2 is necessary for normal ovulation and CL formation

    Cellular Therapy via Spermatogonial Stem Cells for Treating Impaired Spermatogenesis, Non-Obstructive Azoospermia

    No full text
    Male infertility is a major health problem affecting about 8–12% of couples worldwide. Spermatogenesis starts in the early fetus and completes after puberty, passing through different stages. Male infertility can result from primary or congenital, acquired, or idiopathic causes. The absence of sperm in semen, or azoospermia, results from non-obstructive causes (pretesticular and testicular), and post-testicular obstructive causes. Several medications such as antihypertensive drugs, antidepressants, chemotherapy, and radiotherapy could lead to impaired spermatogenesis and lead to a non-obstructive azoospermia. Spermatogonial stem cells (SSCs) are the basis for spermatogenesis and fertility in men. SSCs are characterized by their capacity to maintain the self-renewal process and differentiation into spermatozoa throughout the male reproductive life and transmit genetic information to the next generation. SSCs originate from gonocytes in the postnatal testis, which originate from long-lived primordial germ cells during embryonic development. The treatment of infertility in males has a poor prognosis. However, SSCs are viewed as a promising alternative for the regeneration of the impaired or damaged spermatogenesis. SSC transplantation is a promising technique for male infertility treatment and restoration of spermatogenesis in the case of degenerative diseases such as cancer, radiotherapy, and chemotherapy. The process involves isolation of SSCs and cryopreservation from a testicular biopsy before starting cancer treatment, followed by intra-testicular stem cell transplantation. In general, treatment for male infertility, even with SSC transplantation, still has several obstacles. The efficiency of cryopreservation, exclusion of malignant cells contamination in cancer patients, and socio-cultural attitudes remain major challenges to the wider application of SSCs as alternatives. Furthermore, there are limitations in experience and knowledge regarding cryopreservation of SSCs. However, the level of infrastructure or availability of regulatory approval to process and preserve testicular tissue makes them tangible and accurate therapy options for male infertility caused by non-obstructive azoospermia, though in their infancy, at least to date
    corecore