12 research outputs found

    A novel sphingosylphosphorylcholine and sphingosine-1-phosphate receptor 1 antagonist, KRO-105714, for alleviating atopic dermatitis

    Get PDF
    Background Atopic dermatitis (eczema) is a type of inflammation of the skin, which presents with itchy, red, swollen, and cracked skin. The high global incidence of atopic dermatitis makes it one of the major skin diseases threatening public health. Sphingosylphosphorylcholine (SPC) and sphingosine-1-phosphate (S1P) act as pro-inflammatory mediators, as an angiogenesis factor and a mitogen in skin fibroblasts, respectively, both of which are important biological responses to atopic dermatitis. The SPC level is known to be elevated in atopic dermatitis, resulting from abnormal expression of sphingomyelin (SM) deacylase, accompanied by a deficiency in ceramide. Also, S1P and its receptor, sphingosine-1-phosphate receptor 1 (S1P1) are important targets in treating atopic dermatitis. Results In this study, we found a novel antagonist of SPC and S1P1, KRO-105714, by screening 10,000 compounds. To screen the compounds, we used an SPC-induced cell proliferation assay based on a high-throughput screening (HTS) system and a human S1P1 protein-based [35S]-GTPγS binding assay. In addition, we confirmed the inhibitory effects of KRO-105714 on atopic dermatitis through related cell-based assays, including a tube formation assay, a cell migration assay, and an ELISA assay on inflammatory cytokines. Finally, we confirmed that KRO-105714 alleviates atopic dermatitis symptoms in a series of mouse models. Conclusions Taken together, our data suggest that SPC and S1P1 antagonist KRO-105714 has the potential to alleviate atopic dermatitis.This work was supported by a grant from the Korea Research Council for Industrial Science and Technology (KK-1933-20) to HC, under the industrial infrastructure program for fundamental technologies and Korea Institute for Advancement of Technology through the Inter-ER Cooperation Projects (R0002017) which are funded by the Ministry of Trade, Industry & Energy, Korea to YDG

    Cross-Regulation between Oncogenic BRAFV600E Kinase and the MST1 Pathway in Papillary Thyroid Carcinoma

    Get PDF
    BACKGROUND:The BRAF(V600E) mutation leading to constitutive signaling of MEK-ERK pathways causes papillary thyroid cancer (PTC). Ras association domain family 1A (RASSF1A), which is an important regulator of MST1 tumor suppressor pathways, is inactivated by hypermethylation of its promoter region in 20 to 32% of PTC. However, in PTC without RASSF1A methylation, the regulatory mechanisms of RASSF1A-MST1 pathways remain to be elucidated, and the functional cooperation or cross regulation between BRAF(V600E) and MST1,which activates Foxo3,has not been investigated. METHODOLOGY/PRINCIPAL FINDINGS:The negative regulators of the cell cycle, p21 and p27, are strongly induced by transcriptional activation of FoxO3 in BRAF(V600E) positive thyroid cancer cells. The FoxO3 transactivation is augmented by RASSF1A and the MST1 signaling pathway. Interestingly, introduction of BRAF(V600E)markedly abolished FoxO3 transactivation and resulted in the suppression of p21 and p27 expression. The suppression of FoxO3 transactivation by BRAF(V600E)is strongly increased by coexpression of MST1 but it is not observed in the cells in which MST1, but not MST2,is silenced. Mechanistically, BRAF(V600E)was able to bind to the C-terminal region of MST1 and resulted in the suppression of MST1 kinase activities. The induction of the G1-checkpoint CDK inhibitors, p21 and p27,by the RASSF1A-MST1-FoxO3 pathway facilitates cellular apoptosis, whereas addition of BRAF(V600E) inhibits the apoptotic processes through the inactivation of MST1. Transgenic induction of BRAF(V600E)in the thyroid gland results in cancers resembling human papillary thyroid cancers. The development of BRAF(V600E)transgenic mice with the MST1 knockout background showed that these mice had abundant foci of poorly differentiated carcinomas and large areas without follicular architecture or colloid formation. CONCLUSIONS/SIGNIFICANCE:The results of this study revealed that the oncogenic effect of BRAF(V600E) is associated with the inhibition of MST1 tumor suppressor pathways, and that the activity of RASSF1A-MST1-FoxO3 pathways determines the phenotypes of BRAF(V600E) tumors

    Specificity of Alcohol Dehydrogenases for Sulfoxides †

    No full text

    Flexibility of Liver Alcohol Dehydrogenase in Stereoselective Binding of 3-Butylthiolane 1-Oxides

    No full text
    Thiolane 1-oxides are analogs of the carbonyl substrates that bind to the alcohol dehydrogenase−NADH complex and are potent uncompetitive inhibitors against alcohol [Chadha, V. K., et al. (1985) J. Med. Chem. 28, 36−40]. The four stereoisomers of 3-butylthiolane 1-oxide (BTO) were separated by chiral phase chromatography. CD and 1H-NMR spectra identified the enantiomeric pairs. 1H-NMR chemical shifts were assigned on the basis of COSY spectra of both diastereoisomers and confirmed by HMQC spectra. Coupling constants were determined through one-dimensional decoupling experiments. NMR with chiral shift reagents, Eu(hfc)3 [europium tris[3-[(heptafluoropropyl)hydroxymethylene]-(+)-camphorate]] or (R)-(−)-N-(3,5-dinitrobenzoyl)-α-methylbenzylamine, determined that the most inhibitory isomer is either 1S,3R or 1R,3S. The chemical shifts of protons in the thiolane 1-oxide ring were influenced by the whole structure and were not correlated with the computed Mulliken charges. X-ray crystallography at 2.1 and 1.66 Å resolution of the ternary enzyme complexes with NADH demonstrated that the absolute configuration of the most inhibitory (Kii = 0.31 μM) stereoisomer is 1S,3R and the next best inhibitor (Kii = 0.73 μM) is 1S,3S. The thiolane 1-oxide rings bind in the same position, in the substrate binding site, but the geometry of the complexes suggests that the sulfoxides are not transition state analogs. Significantly, the butyl groups of the two isomers are accommodated differently by flexible amino acid side chains adopting alternative rotameric conformations

    A Small Molecule Promoting Neural Differentiation Suppresses Cancer Stem Cells in Colorectal Cancer

    No full text
    Cancer stem cells (CSCs) are a tumor cell subpopulation that drives tumor progression and metastasis, leading to a poor overall survival of patients. In colorectal cancer (CRC), the hyper-activation of Wnt/β-catenin signaling by a mutation of both adenomatous polyposis coli (APC) and K-Ras increases the size of the CSC population. We previously showed that CPD0857 inactivates Wnt/β-catenin signaling by promoting the ubiquitin-dependent proteasomal degradation of β-catenin and Ras proteins, thereby decreasing proliferation and increasing the apoptosis of CRC lines. CPD0857 also decreased the growth and invasiveness of CRC cells harboring mutant K-Ras resistant to EGFR mAb therapy. Here, we show that CPD0857 treatment decreases proliferation and increases the neuronal differentiation of neural progenitor cells (NPCs). CDP0857 effectively reduced the expression of CSC markers and suppressed self-renewal capacity. CPD0857 treatment also inhibited the proliferation and expression of CSC markers in D-K-Ras MT cells carrying K-Ras, APC and PI3K mutations, indicating the inhibition of PI3K/AKT signaling. Moreover, CPD0857-treated xenograft mice showed a regression of tumor growth and decreased numbers of CSCs in tumors. We conclude that CPD0857 could serve as the basis of a drug development strategy targeting CSCs activated through Wnt/β-catenin-Ras MAPK-PI3K/AKT signaling in CRCs

    Colon-Targeted Trans-Cinnamic Acid Ameliorates Rat Colitis by Activating GPR109A

    No full text
    We designed colon-targeted trans-cinnamic acid (tCA) and synthesized its conjugates with glutamic acid (tCA-GA) and aspartic acid (tCA-AA). We evaluated the anti-colitic activity of colon-targeted tCA using a dinitrobenzenesulfonic acid-induced rat colitis model. The conjugates lowered the distribution coefficient and Caco-2 cell permeability of tCA and converted to tCA in the cecum, with higher rates and percentages with tCA-GA than with tCA-AA. Following oral gavage, tCA-GA delivered a higher amount of tCA to the cecum and exhibited better anti-colitic effects than tCA and sulfasalazine (SSZ), which is the current treatment for inflammatory bowel disease. In the cellular assay, tCA acted as a full agonist of GPR109A (EC50: 530 µM). The anti-colitic effects of tCA-GA were significantly compromised by the co-administration of the GPR109A antagonist, mepenzolate. Collectively, colon-targeted tCA potentiated the anti-colitic activity of tCA by effectively activating GPR109A in the inflamed colon, enabling tCA to elicit therapeutic superiority over SSZ

    Inhibition of c-Kit signaling by diosmetin isolated from Chrysanthemum morifolium

    Get PDF
    The interaction of stem cell factor (SCF) with its cognate receptor c-Kit is closely associated with the survival and maturation of melanocytes. To investigate novel depigmentation agents, we screened 2,000 plant extracts for c-Kit inhibitors to identify active small molecules by using time-resolved fluorescence enzyme assays. For the active extracts identified as inhibitors of c-Kit enzyme, we evaluated the effects of the active extracts and isolated flavonoids on c-Kit phosphorylation in MO7e/melanocytes. Anti-melanogenic activity was also examined in melanocytes and melanoderm model. The flavonoids such as diosmetin, apigenin, acacetin and luteolin isolated from Chrysanthemum morifolium were found to be active in inhibiting c-Kit both at enzyme and cellular levels. In addition, these flavonoids attenuated SCF-induced proliferation of human primary melanocytes without toxicity and suppressed ultraviolet (UV) B irradiation-mediated melanin synthesis significantly. Among the active flavonoids, diosmetin was found to inhibit SCF-induced melanogenesis in a human melanoderm model. These results strongly suggest that C. morifolium extract and diosmetin have potential to suppress SCF-/UVB-induced melanogenesis, and could be developed as anti-pigmentation agents

    Discovery of GSK3β Inhibitors through In Silico Prediction-and-Experiment Cycling Strategy, and Biological Evaluation

    No full text
    Direct inhibitors of glycogen synthase kinase 3β (GSK3β) have been investigated and reported for the past 20 years. In the search for novel scaffold inhibitors, 3000 compounds were selected through structure-based virtual screening (SBVS), and then high-throughput enzyme screening was performed. Among the active hit compounds, pyrazolo [1,5-a]pyrimidin-7-amine derivatives showed strong inhibitory potencies on the GSK3β enzyme and markedly activated Wnt signaling. The result of the molecular dynamics (MD) simulation, enhanced by the upper-wall restraint, was used as an advanced structural query for the SBVS. In this study, strong inhibitors designed to inhibit the GSK3β enzyme were discovered through SBVS. Our study provides structural insights into the binding mode of the inhibitors for further lead optimization

    Effect of bexarotene on differentiation of glioblastoma multiforme compared with ATRA

    No full text
    Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumor. Since differentiation can attenuate or halt the growth of tumor cells, an image-based phenotypic screening was performed to find out drugs inducing morphological differentiation of GBMs. Bexarotene, a selective retinoid X receptor agonist, showed strong inhibition of neurospheroidal colony formation and migration of cultured primary GBM cells. Bexarotene treatment reduced nestin expression, while significantly increasing glial fibrillary acidic protein (GFAP) expression. The effect of bexarotene on gene expression profile was compared with the activity of all-trans retinoic acid (ATRA), a well-known differentiation inducer. Both drugs largely altered the gene expression pattern into a tumor-ameliorating direction. These drugs increased the gene expression levels of Kruppel-like factor 9 (KLF9), regulator of G-protein signaling 4 (RGS4), growth differentiation factor 15 (GDF15), angiopoietin-like protein 4 (ANGPTL4), and lowered the level of chemokine receptor type 4 (CXCR4). However, transglutaminase 2 (TG2) induction, an adverse effect of ATRA, was much weaker in bexarotene treated primary GBM cells. Consistently, the TG2 enzymatic activity was negligibly affected by bexarotene treatment. It is important to control TG2 overexpression since its upregulation is correlated with tumor transformation and drug resistance. Bexarotene also showed in vivo tumoricidal effects in a GBM xenograft mouse model. Therefore, we suggest bexarotene as a more beneficial differentiation agent than ATRA for GBM.1
    corecore