2,079 research outputs found

    Student Progression Through Developmental Sequences in Community Colleges

    Get PDF
    Developmental education is designed to provide students with weak academic skills the opportunity to strengthen those skills enough to prepare them for college-level coursework. The concept is simple enough—students who arrive unprepared for college are provided instruction to bring them up to an adequate level. But in practice, developmental education (or “remedial” education, we use these terms interchangeably) is complex and confusing. Experts do not agree on the meaning of being “college ready,” and policies governing assessment, placement, pedagogy, staffing, completion, and eligibility for enrollment in college-level, credit-bearing courses vary from state to state, college to college, and program to program. The developmental education process is confusing enough simply to describe, yet from the point of view of the student, especially one with very weak academic skills and little previous success in school, it may appear as a bewildering set of unanticipated obstacles involving several assessments, classes in more than one subject area, and sequences of courses requiring three or more semesters of study before the student (often a high school graduate) is judged prepared for college-level work

    3D Cell Printed Tissue Analogues: A New Platform for Theranostics

    Get PDF
    Stem cell theranostics has received much attention for noninvasively monitoring and tracing transplanted therapeutic stem cells through imaging agents and imaging modalities. Despite the excellent regenerative capability of stem cells, their efficacy has been limited due to low cellular retention, low survival rate, and low engraftment after implantation. Three-dimensional (3D) cell printing provides stem cells with the similar architecture and microenvironment of the native tissue and facilitates the generation of a 3D tissue-like construct that exhibits remarkable regenerative capacity and functionality as well as enhanced cell viability. Thus, 3D cell printing can overcome the current concerns of stem cell therapy by delivering the 3D construct to the damaged site. Despite the advantages of 3D cell printing, the in vivo and in vitro tracking and monitoring of the performance of 3D cell printed tissue in a noninvasive and real-time manner have not been thoroughly studied. In this review, we explore the recent progress in 3D cell technology and its applications. Finally, we investigate their potential limitations and suggest future perspectives on 3D cell printing and stem cell theranostics.116Nsciescopu

    A Rare Case of Interdigitating Dendritic Cell Sarcoma in the Nasal Cavity

    Get PDF
    Interdigitating dendritic cell sarcoma (IDCS) is an extremely rare neoplasm that mainly arises from the lymphoid tissues of the immune system. Although this neoplasm typically occurs anywhere along the lymph nodes, it can also be found at extranodal sites, especially in the head and neck. We experienced a rare case of extranodal IDCS in the nasal cavity, a location that has not been previously reported. A 73-year-old woman presented with a polyp-like mass in the nasal cavity and underwent endoscopic sinus surgery. A histologic study confirmed the mass as IDCS by immunohistochemistry with S-100 antibody, and postoperative adjuvant radiotherapy was administered. Although the incidence is extremely rare, this case suggests that extranodal IDCS should be considered in the differential diagnosis of nasal cavity masses

    EUTROPHICATION OF THE MAJOR RESERVOIRS IN KOREA

    Get PDF
    Trophic state of several major reservoirs in Korea are reviewed. Most of large reservoirs are mesotrophic to eutrophic, suffering bluegreen algal blooms. Recently many reservoirs are being eutrophied at high rate mainly due to the increase of excretion by livestock in watershed and netcage-type fishfarms within the lake basins. The trophic state changes of Lake Soyang, from oligotrophy to eutrophy in recent 10 years, are presented as a case study of rapid eutrophication. Chlorophyll a concentration increased from ca. 3mg/m³ in early 1980s to 15 mg/m³ in 1989. The dominant phytoplankton species in summer are changed from Peridinium to Anabaena since 1986 and the standing crop of Anabaena has been increasing. Secchidisc depth decreased from 5 to 1m. TP increased from 7 to 20 mgP/m³. The rate of hypolimnetic oxygen deficit increased year to year from 0.028 mgO₂/cm²/day in 1986 to 0.094 in 1989. Fishfarms within the lake are the major phosphorus source in Lake Soyang exceeding the total phosphorus loading from the watershed. This high rate of eutrophication is expected to persist in next decade.Article信州大学理学部付属諏訪臨湖実験所報告 7: 21-29(1991)departmental bulletin pape

    Genome sequence of the chromate-resistant bacterium Leucobacter salsicius type strain M1-8T

    Get PDF
    Leucobacter salsicius M1-8(T) is a member of the Microbacteriaceae family within the class Actinomycetales. This strain is a Gram-positive, rod-shaped bacterium and was previously isolated from a Korean fermented food. Most members of the genus Leucobacter are chromate-resistant and this feature could be exploited in biotechnological applications. However, the genus Leucobacter is poorly characterized at the genome level, despite its potential importance. Thus, the present study determined the features of Leucobacter salsicius M1-8(T), as well as its genome sequence and annotation. The genome comprised 3,185,418 bp with a G+C content of 64.5%, which included 2,865 protein-coding genes and 68 RNA genes. This strain possessed two predicted genes associated with chromate resistance, which might facilitate its growth in heavy metal-rich environments.

    Microspinning: Local Surface Mixing via Rotation of Magnetic Microparticles for Efficient Small-Volume Bioassays

    Get PDF
    The need for high-throughput screening has led to the miniaturization of the reaction volume of the chamber in bioassays. As the reactor gets smaller, surface tension dominates the gravitational or inertial force, and mixing efficiency decreases in small-scale reactions. Because passive mixing by simple diffusion in tens of microliter-scale volumes takes a long time, active mixing is needed. Here, we report an efficient micromixing method using magnetically rotating microparticles with patterned magnetization induced by magnetic nanoparticle chains. Because the microparticles have magnetization patterning due to fabrication with magnetic nanoparticle chains, the microparticles can rotate along the external rotating magnetic field, causing micromixing. We validated the reaction efficiency by comparing this micromixing method with other mixing methods such as simple diffusion and the use of a rocking shaker at various working volumes. This method has the potential to be widely utilized in suspension assay technology as an efficient mixing strategy

    Adsorptive removal of CO2 from CO2-CH4 mixture using cation-exchanged zeolites

    Get PDF
    Raw natural gas and landfill gas contains methane as its major component, but it also contains considerable amounts of contaminants such as CO2 and H2S (i.e. acid gases) that can cause corrosion and fouling of the pipeline and equipment during transportation and liquefaction. Amine-based CO2 gas removal processes have been employed in the gas industry, but these processes have disadvantages including high regeneration energy requirements and inefficiencies; these issues have not been adequately solved to date. Currently, adsorptive acid gas removal technologies have received significant interest because of the simplicity of adsorbent regeneration by thermal or pressure variation1). Numerous micro- and mesoporous adsorbents including zeolites [2-3], titanosilicates[4], activated carbons[5-6], metal-organic-framework (MOF) [7], and silica-alumina materials[8-9] were studied for this type of application. However, the CO2/CH4 selectivity of the aforementioned adsorbents was not high enough for commercial applications.In this study, different cation-exchanged zeolites were synthesized, physicochemically characterized, and evaluated for adsorptive removal of CO2 from CO2-CH4 mixtures. The adsorption isotherms of CO2 and CH4 in the pressure and temperature ranges 0 − 3MPa and 10 – 40 oC, respectively, for different cation-exchanged zeolites were measured and compared. The ideal-adsorbed solution theory (IAST) was employed for the estimation of CO2/CH4 selectivity for the different cation-exchanged zeolites. References 1) D. Aaron, C. Tsouris, Separ. Sci. Technol. 2005, 40, 321–348 2) J. Collins, US Patent No. 3,751,878. 1973. 3) M. W. Seery, US Patent No. 5,938,819. 1999 4) W. B. Dolan, M.J. Mitariten, US Patent No. 6,610,124 B1. 2003 5) A. Kapoor, R.T. Yang, Chem. Eng. Sci. 1989, 44, 1723–1733 6) A. Jayaraman, Chiao, A. S.; Padin, J.; Yang, R. T.; Munson, C. L., Separ. Sci. Technol. 2002 37, 2505–2528 7) L. Hamon, E. Jolimaitre, G. Pringruber , Ind. Eng. Chem. Res. 2010, 49, 7497-7503 8) W.B. Dolan, M.J. Mitariten, US patent No. 2003/0047071, 2003 9) G. Bellussi, P. Broccia, A. Carati, R. Millini, P. Pollesel, C. Rizzo, M. Tagliabue, Micropor. Mesopor. Mat., 2011, 146, 134–14

    Guillain-Barre syndrome after lumbar epidural block

    Get PDF
    corecore