52 research outputs found
The Search for Supernova-produced Radionuclides in Terrestrial Deep-sea Archives
An enhanced concentration of 60Fe was found in a deep ocean's crust in 2004
in a layer corresponding to an age of ~2 Myr. The confirmation of this signal
in terrestrial archives as supernova-induced and detection of other
supernova-produced radionuclides is of great interest. We have identified two
suitable marine sediment cores from the South Australian Basin and estimated
the intensity of a possible signal of the supernova-produced radionuclides
26Al, 53Mn, 60Fe and the pure r-process element 244Pu in these cores. A finding
of these radionuclides in a sediment core might allow to improve the time
resolution of the signal and thus to link the signal to a supernova event in
the solar vicinity ~2 Myr ago. Furthermore, it gives an insight on
nucleosynthesis scenarios in massive stars, the condensation into dust grains
and transport mechanisms from the supernova shell into the solar system
Copper-nickel-rich, amalgamated ferromanganese crust-nodule deposits from Shatsky Rise, NW Pacific
A unique set of ferromanganese crusts and nodules collected from Shatsky Rise (SR), NW Pacific, were analyzed for mineralogical and chemical compositions, and dated using Be isotopes and cobalt chronometry. The composition of these midlatitude, deep-water deposits is markedly different from northwest-equatorial Pacific (PCZ) crusts, where most studies have been conducted. Crusts and nodules on SR formed in close proximity and some nodule deposits were cemented and overgrown by crusts, forming amalgamated deposits. The deep-water SR crusts are high in Cu, Li, and Th and low in Co, Te, and Tl concentrations compared to PCZ crusts. Thorium concentrations (ppm) are especially striking with a high of 152 (mean 56), compared to PCZ crusts (mean 11). The deep-water SR crusts show a diagenetic chemical signal, but not a diagenetic mineralogy, which together constrain the redox conditions to early oxic diagenesis. Diagenetic input to crusts is rare, but unequivocal in these deep-water crusts. Copper, Ni, and Li are strongly enriched in SR deep-water deposits, but only in layers older than about 3.4 Ma. Diagenetic reactions in the sediment and dissolution of biogenic calcite in the water column are the likely sources of these metals. The highest concentrations of Li are in crust layers that formed near the calcite compensation depth. The onset of Ni, Cu, and Li enrichment in the middle Miocene and cessation at about 3.4 Ma were accompanied by changes in the deep-water environment, especially composition and flow rates of water masses, and location of the carbonate compensation depth.
Key Points
- Fe-Mn crusts can have a diagenetic component
- Mid-latitude N. Pacific deep-water Fe-Mn crusts are uniquely enriched in Cu, Th, Li
- Temporal changes in deep-ocean geochemical processes are recorde
Age and date for early arrival of the Acheulian in Europe (Barranc de la Boella, la Canonja, Spain)
The first arrivals of hominin populations into Eurasia during the Early Pleistocene are currently considered to have occurred
as short and poorly dated biological dispersions. Questions as to the tempo and mode of these early prehistoric settlements
have given rise to debates concerning the taxonomic significance of the lithic assemblages, as trace fossils, and the
geographical distribution of the technological traditions found in the Lower Palaeolithic record. Here, we report on the
Barranc de la Boella site which has yielded a lithic assemblage dating to ,1 million years ago that includes large cutting
tools (LCT). We argue that distinct technological traditions coexisted in the Iberian archaeological repertoires of the late
Early Pleistocene age in a similar way to the earliest sub-Saharan African artefact assemblages. These differences between
stone tool assemblages may be attributed to the different chronologies of hominin dispersal events. The archaeological
record of Barranc de la Boella completes the geographical distribution of LCT assemblages across southern Eurasia during
the EMPT (Early-Middle Pleistocene Transition, circa 942 to 641 kyr). Up to now, chronology of the earliest European LCT
assemblages is based on the abundant Palaeolithic record found in terrace river sequences which have been dated to the
end of the EMPT and later. However, the findings at Barranc de la Boella suggest that early LCT lithic assemblages appeared
in the SW of Europe during earlier hominin dispersal episodes before the definitive colonization of temperate Eurasia took
place.The research at Barranc de la Boella has been carried out with the financial support of the Spanish Ministerio de Economı´a y Competitividad (CGL2012-
36682; CGL2012-38358, CGL2012-38434-C03-03 and CGL2010-15326; MICINN project HAR2009-7223/HIST), Generalitat de Catalunya, AGAUR agence (projects
2014SGR-901; 2014SGR-899; 2009SGR-324, 2009PBR-0033 and 2009SGR-188) and Junta de Castilla y Leo´n BU1004A09. Financial support for Barranc de la Boella
field work and archaeological excavations is provided by the Ajuntament de la Canonja and Departament de Cultura (Servei d’Arqueologia i Paleontologia) de la
Generalitat de Catalunya. A. Carrancho’s research was funded by the International Excellence Programme, Reinforcement subprogramme of the Spanish Ministry
of Education. I. Lozano-Ferna´ndez acknowledges the pre-doctoral grant from the Fundacio´n Atapuerca. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript
Evidence for the stability of the West Antarctic Ice Sheet divide for 1.4 million years
Past fluctuations of the West Antarctic Ice Sheet (WAIS) are of fundamental interest because of the possibility of WAIS collapse in the future and a consequent rise in global sea level. However, the configuration and stability of the ice sheet during past interglacial periods remains uncertain. Here we present geomorphological evidence and multiple cosmogenic nuclide data from the southern Ellsworth Mountains to suggest that the divide of the WAIS has fluctuated only modestly in location and thickness for at least the last 1.4 million years. Fluctuations during glacial–interglacial cycles appear superimposed on a long-term trajectory of ice-surface lowering relative to the mountains. This implies that as a minimum, a regional ice sheet centred on the Ellsworth-Whitmore uplands may have survived Pleistocene warm periods. If so, it constrains the WAIS contribution to global sea level rise during interglacials to about 3.3 m above present
Mid-Holocene pulse of thinning in the Weddell Sea sector of the West Antarctic ice sheet
Establishing the trajectory of thinning of the West Antarctic ice sheet (WAIS) since the last glacial maximum (LGM) is important for addressing questions concerning ice sheet (in)stability and changes in global sea level. Here we present detailed geomorphological and cosmogenic nuclide data from the southern Ellsworth Mountains in the heart of the Weddell Sea embayment that suggest the ice sheet, nourished by increased snowfall until the early Holocene, was close to its LGM thickness at 10 ka. A pulse of rapid thinning caused the ice elevation to fall ~400 m to the present level at 6.5–3.5 ka, and could have contributed 1.4–2 m to global sea-level rise. These results imply that the Weddell Sea sector of the WAIS contributed little to late-glacial pulses in sea-level rise but was involved in mid-Holocene rises. The stepped decline is argued to reflect marine downdraw triggered by grounding line retreat into Hercules Inlet
Extreme silicon isotope fractionation due to Si organic complexation: Implications for silica biomineralization
A combination of theoretical predictions and isotopic equilibration experiments using the three-isotope method have been performed to assess Si isotope fractionation among minerals, and aqueous species in the presence of dissolved catechol. Aqueous Si in abiotic ambient temperature aqueous solutions is dominated by the IV-coordinated H4SiO40 species, but the presence of aqueous catechol provokes the formation of a VI-fold Si-catechol complex. Results show an equilibrium Si fractionation factor of ∼19‰ between the VI-fold coordinated Si-catechol complex and the IV-fold coordinated aqueous silicic acid, an amplitude never previously observed for silicon. The fractionation between V-fold Si-organo complexes (with diolate, glyconate or methyllactate groups) and silicic acid has also been estimated through theoretical predictions to be about −10‰. These extreme fractionations can be used to improve our ability to interpret the Si isotope compositions of natural solids, and in particular those associated with marine silica biomineralization processes (e.g. sponge spicules)
The experimental determination of equilibrium Si isotope fractionation factors among H4SiO4 degrees, H3SiO4- and amorphous silica (SiO2 center dot 0.32 H2O) at 25 and 75 degrees C using the three-isotope method
The accurate interpretation of Si isotope signatures in natural systems requires knowledge of the equilibrium isotope fractionation between Si-bearing solids and the dominant Si-bearing aqueous species. Aqueous silicon speciation is dominated by silicic acid (H4SiO4o) in most natural aqueous fluids at pH 9), equilibrium Si isotope fractionation factors between solid and aqueous solution are higher, at 1.63 ± 0.23‰ at 25 °C, and 1.06 ± 0.13‰ at 75 °C. Taking account of the distribution of the aqueous Si species, equilibrium Si isotope fractionation factors between H3SiO4− and H4SiO4o of −2.34 ± 0.13‰ and −2.21 ± 0.05‰ at 25 and 75 °C, respectively, were determined. The distinct equilibrium isotope fractionation factors of H3SiO4− and H4SiO4o, and its variation with temperature can be used to establish paleo-pH and temperature proxies. The application of the three-isotope method also provides insight into the rates of isotopic exchange. For the solid grain size used (∼20 nm), these rates match closely the measured bulk dissolution rates for amorphous silica for most of the isotope exchange process, suggesting the dominant and rate controlling isotope exchange mechanism in the experiments is detachment and reattachment of material at the amorphous silica surface
Interferences and Matrix Effects on Iron Isotopic Composition Measurements by 57Fe-58Fe Double-Spike Multi-Collector Inductively Coupled Plasma Mass Spectrometry; the Importance of Calcium and Aluminum Interferences
International audienceMulti-collector inductively coupled plasma mass spectrometers (MC-ICPMS) are widely used for Fe isotope measurements. The latter may be perturbed by interferences (notably from Cr and Ni) and matrix effects (notably from major elements), caused by elements remaining in the samples after purification. We quantified some of these perturbations and our ability to correct them whenever possible, using Thermo Neptune and Neptune Plus MC-ICPMS with a 57-58 Fe double-spike mass bias correction. 54 Cr and 58 Ni isobaric interference corrections were found to be extremely efficient up to Cr/Fe 0.12 and Ni/Fe 0.04 (g/g natural Fe). Matrix effects were found negligible up to at least Na/Fe 175, Mg/Fe 10, K/Fe 1.5, and Mo/Fe 75 (g/g natural Fe). 28 Si 2 + interference was found negligible up to Si/Fe 50. Finally, we found that calcium and aluminum could cause significant interferences (e.g., 40 Ca 16 O and 27 Al 2 +), for Ca/Fe ≥ 2.5 and Al/Fe ≥ 2.5. The perturbation intensity relative to the Ca/Fe ratio was found dependent on the measurement conditions (plateau width). While working with samples with potentially high calcium or aluminum contents (such as calcite minerals or tests, bones and teeth, or marine samples and crustal rocks), we recommend to carefully take into account Ca and Al while tuning the instrument and checking the measurement accuracy with isotopic standards (i.e., doping the isotopic standard with Ca and Al levels comparable to those of the samples)
Iron isotope fingerprints of redox and biogeochemical cycling in the soil-water-rice plant system of a paddy field
International audienceThe iron isotope composition was used to investigate dissimilatory iron reduction (DIR) processes in an iron-rich waterlogged paddy soil, the iron uptake strategies of plants and its translocation in the different parts of the rice plant along its growth. Fe concentration and isotope composition (delta Fe-56) in irrigation water, precipitates from irrigation water, soil, pore water solution at different depths under the surface water, iron plaque on rice roots, rice roots, stems, leaves and grains were measured. Over the 8.5-10 cm of the vertical profiles investigated, the iron pore water concentration (0.01 to 243 mg center dot 1(-1)) and delta Fe-56 (-0.80 to -3.40%.) varied over a large range. The significant linear co-variation between Ln[Fe] and delta Fe-56 suggests an apparent Rayleigh-type behavior of the DIR processes. An average net fractionation factor between the pore water and the soil substrate of Delta Fe-56 approximate to -1.15 parts per thousand was obtained, taking the average of all the delta Fe-56 values weighted by the, amount of Fe for each sample. These results provide a robust field study confirmation of the conceptual model of Crosby et al. (2005, 2007) for interpreting the iron isotope fractionation observed during DIR, established from a series of laboratories experiments. In addition, the strong enrichment of heavy Fe isotope measured in the root relative to the soil solution suggest that the iron uptake by roots is more likely supplied by iron from plaque and not from the plant-available iron in the pore water. Opposite to what was previously observed for plants following strategy II for iron uptake from soils, an iron isotope fractionation factor of -0.9%. was found from the roots to the rice grains, pointing to isotope fractionation during rice plant growth. All these features highlight the insights iron isotope composition provides into the biogeochemical Fe cycling in the soil-water-rice plant systems studied in nature. (C) 2016 Elsevier B.V. All rights reserved
- …